全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2012 

雷诺数对涡轮叶片换热影响的研究

DOI: 10.6052/j.issn.1000-4750.2010.12.0922, PP. 349-358

Keywords: 涡轮,数值模拟,流热耦合,雷诺数,计算精度

Full-Text   Cite this paper   Add to My Lib

Abstract:

雷诺数的改变会引起涡轮叶片边界层等流态的改变,进而对叶片表面的对流换热产生强烈影响.该文首先结合实验数据对影响流热耦合计算精度的若干因素的敏感性进行了分析;然后在此基础上,针对MarkⅡ叶型分析了雷诺数对涡轮叶片表面换热的影响.结果表明:流热耦合计算时相关参数的选择对模拟的精度有明显影响,该文针对MarkⅡ叶型得到的一套参数是合理的,相关结果与实验吻合良好;雷诺数的变化使得边界层等流动状态发生改变,从而导致涡轮叶片表面对流换热状态和温度分布产生明显的差异.

References

[1]  Hylton L D, Mihelc M S, Turner E R, et al. Analyticaland experiment evaluation of the heat transferdistribution over the surface of turbine vane [R]. NASACR-168015, 1985.
[2]  刘高文, 刘松龄. 喷射角对涡轮叶栅端壁气膜冷却传热的影响[J]. 推进技术, 2002, 23(6): 496-512.Liu Gaowen, Liu Songling. Influence of injection angleon the thermodynamic aspects of endwall film-cooling ina turbine cascade [J]. Journal of Propulsion Technology,2002, 23(6): 496-512. (in Chinese)
[3]  苏生, 刘建军, 安柏涛. 内冷涡轮叶栅三维气热耦合数值模拟[J]. 航空动力学报, 2007, 22(12): 2018-2024.Su Sheng, Liu Jianjun, An Baitao. Numerical simulationof turbine vane with three dimensional aero-thermalcoupled heat transfer [J]. Journal of Aerospace Power,2007, 22(12): 2018-2024. (in Chinese)
[4]  吴宏, 陶智, 徐国强. 带气膜出流的旋转叶片冲击冷却的实验研究[J]. 航空动力学报, 2000, 15(4): 375-380.Wu Hong, Tao Zhi, Xu Guoqiang. Experiments ofimpinging cooling in leading edge of rotating blades withoutflow film [J]. Journal of Aerospace Power, 2000, 15(4): 375-380. (in Chinese)
[5]  Radomsky R W. Detailed boundary layer measurementson a turbine stator vane at elevated freestream turbulencelevels [C]. ASME Turbo Expo 2001: Power for Land,Sea, & Air. 2001.
[6]  Bammert K, Sandstede H. Measurements of theboundary layer development along a turbine blade withrough surfaces [J]. ASME Journal of Engineering for GasTurbines and Power, 1980, 102: 978-983.
[7]  Turner A, Tarada F, Bayley F. Effects of surfaceroughness on heat transfer to gas turbine blades [R].AGARD-CP-390, 1985.
[8]  Blair M F. An Experimental study of heat transfer in alarge-scale turbine rotor passage [J]. Journal ofTurbomachinery, 1994, 116: 1– 13.
[9]  Hoffs A, Drost U, Bolcs A. Heat transfer measurementson a turbine airfoil at various reynolds numbers andturbulence intensities including effects of surfaceroughness [C]. ASME paper 96-GT-169, 1996.
[10]  Bogard D G, Schmidt D L, Tabbita M. Characterizationand laboratory simulation of turbine airfoil surfaceroughness and associated heat transfer [J]. Journal ofTurbomachinery, 1998, 120: 337-342.
[11]  Van Fossen G J, Simoneau R J, Ching C Y. Influence ofturbulence parameters, reynolds number, and body shapeon stagnation region heat transfer [J]. Heat Transfer,1995, 117: 597-603.
[12]  Brevet P, Dorignac C, Jolly M, Vullierme J J. Heattransfer to a row of impinging jets in consideration ofoptimization [J]. Heat and Mass Transfer, 2002, 45:4191-200.
[13]  Srinath V E, David Kontrovitz. Jet Impingements heattransfer on dimpled target surface [J]. Heat and FluidFlow, 2002, 23: 22-28.
[14]  Jiang H W, Han J C. Effect of film hole row location onfilm effectives on a gas turbine blade [J]. Journal of HeatTransfer, 1996, 118: 327-333.
[15]  Ou S, Han J C, Mehendale A B, et al. Unsteady wake ona linear turbine blade cascade with air and CO2 filminjection: Part 1-effect on heat transfer coefficients [J].Journal of Turbine Machinery, 1994, 116: 721-729.
[16]  Hylton L D, Mihelc M S, Turner E R, et al. Analyticaland experiment evaluation of the heat transferdistribution over the surface of turbine vane [R]. NASACR-168015, 1983.
[17]  Medic G, Durbin P A. Toward improved prediction ofheat transfer on turbine blades [J]. Journal ofTurbomachinery, 2002, 124: 187-192.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133