全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2012 

压缩载荷下闭合斜裂纹的分支裂纹渐近扩展分析

DOI: 10.6052/j.issn.1000-4750.2010.12.0932, PP. 223-229

Keywords: 断裂力学,数值模拟,扩展路径,I,型分支裂纹,闭合斜裂纹

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用滑动裂纹模型并结合现有张开斜裂纹的I型分支裂纹扩展特性的研究成果,研究了闭合斜裂纹的I型分支裂纹的渐近扩展特点,结果表明:1)闭合斜裂纹的I型分支裂纹路径的渐近线为平行于最大主应力的一条直线,并得出了渐近线方程;和张开斜裂纹的翼型裂纹不同,闭合斜裂纹的翼型裂纹路径的渐近线不一定过初始裂纹中心点,该渐近线位置与初始裂纹面的摩擦系数、初始裂纹长度及初始裂纹角有关;2)闭合斜裂纹的I型分支裂纹的扩展路径可以近似采用双曲线描述,并得出了描述I型分支裂纹扩展路径的方程.采用ABAQUS二次开发对闭合斜裂纹的分支裂纹的扩展过程进行了数值模拟,并采用数值模拟和现有试验相结合的方法验证了以上结论的正确性.

References

[1]  李强, 杨庆, 栾茂田. 高围压下岩石椭圆裂纹面构型的变化规律[J]. 大连理工大学学报, 2009, 49(4): 545-550.Li Qiang, Yang Qing, Luan Maotian. Research ondeformation of crack surface of rock masses under highconfining compression [J]. Journal of Dalian Universityof Technology, 2009, 49(4): 545-550. (in Chinese)
[2]  李强, 杨庆, 栾茂田, 贾景超. 张开裂纹闭合的数值模拟及简化判据研究[J]. 工程力学, 2009, 26(9): 237-243.Li Qiang, Yang Qing, Luan Maotian, Jia Jingchao.Numerical simulation and simplified criterion for closureof an open crack in brittle materials [J]. EngineeringMechanics, 2009, 26(9): 237-243. (in Chinese) 浏览
[3]  杨庆, 李强, 赵维, 刘洪亮. 翼型裂纹扩展特性的试验和数值分析[J]. 水利学报, 2009, 40(8): 934-940.Yang Qing, Li Qiang, Zhao Wei, Liu Hongliang.Experimental study and numerical simulation onpropagation characteristics of wing type cracks undercompression [J]. Journal of Hydraulic Engineering, 2009,40(8): 934-940. (in Chinese)
[4]  李强, 杨庆, 栾茂田, 贾景超. 曲线翼型裂纹扩展的理论分析及试验验证[J]. 岩土力学学报, 2010, 13(2):345-349.Li Qiang, Yang Qing, Luan Maotian, Jia Jingchao. Studyof curved wing crack path by theory and testing methods[J]. Rock and Soil Mechanics, 2010, 13(2): 345-349.(in Chinese)
[5]  Steif P S. Crack extension under compressive loading [J].Engineering Fracture Mechanics, 1984, 20(3): 463-473.
[6]  Lehner F, Kachanov M. On modeling of “winged” cracksforming under compression [J]. International Journal ofFracture, 1996, 77(4): 65-75.
[7]  Baud P, Reuschle T, Charlez P. An improved wing crackmodel for the deformation and failure of rock incompression [J]. International Journal of RockMechanics and Mining Sciences and GeomechanicsAbstracts, 1996, 33(5): 539-542.
[8]  Ashby M F, Hallam S D. The failure of brittle solidscontaining small cracks under compressive stress states[J]. Acta Metall, 1986, 34(3): 497-510.
[9]  王元汉, 徐钺, 谭国焕, 等. 改进的翼形裂纹分析计算模型[J]. 岩土工程学报, 2000, 22(5): 612-615.Wang Yuanhan, Xu Yue, Tan Guohuan, et al. Animproved calculative model for wing crack [J]. ChineseJournal of Geotechnical Engineering, 2000, 22(5): 612-615. (in Chinese)
[10]  李银平, 伍佑伦, 杨春和. 岩石类材料滑动裂纹模型[J]. 岩石力学与工程学报, 2007, 26(2): 278-284.Li Yinping, Wu Youlun, Yang Chunhe. Comparison ofsliding crack models for rock-like materials [J]. ChineseJournal of Rock Mechanics and Engineering, 2007, 26(2):278-284. (in Chinese)
[11]  Matthew Tilbrook, Mark Hoffman. Approximation ofcurved cracks under mixed-mode loading [J].Engineering Fracture Mechanics, 2007, 74(7): 1026-1040.
[12]  Sumi Y. Computational crack path prediction [J].Theoretical and Applied Fracture Mechanics, 1985, 4(2):149-156.
[13]  Sumi Y, Nemat-Nasser S, Keer L M. On crack branchingand curving in a finite body [J]. International Journal ofFracture, 1983, 21(1): 67-79.
[14]  Horri H, Nemat-Nasser S. Compression-inducedmicrocrack growth in brittle solids: Axial splitting andshear failure [J]. Journal of Geophysical Research, 1985,90(B4): 3105-3125.
[15]  Nemat-Nasser S, Horri H. Compression-inducednonplanar crack extension with application to splitting,exfoliation, and rockburst [J]. Journal of GeophysicalResearch, 1982, 87(B8): 6805-6821.
[16]  Horri H, Nemat-Nasser S. Brittle failure in compression:Splitting, faulting and brittle-ductile transition [J].Philosophical Transactions of the Royal Society ofLondon, 1986, 319(1549): 337-374.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133