全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2012 

爆破震动测试信号预处理分析中趋势项去除方法研究

DOI: 10.6052/j.issn.1000-4750.2011.02.0093, PP. 63-68

Keywords: 爆破震动,趋势项,经验模态分解,最小二乘法,小波法

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于经验模态分解(EMD)、小波法、最小二乘法分别研究了爆破震动测试信号中趋势项的去除算法,并对三种方法去除趋势项效果及重构信号的时频特征进行对比分析。研究表明:小波法、最小二乘法去除测试信号趋势项时需预先设置先验的分解函数基,而EMD法在处理具有短时非平稳特性的爆破震动信号时具有自适应性,因此工程爆破震动测试信号预处理分析中采用EMD法能够更为有效地消除趋势项,提高信号时域和频域分辨率,对准确提取爆破震动时频特征具有重要参考价值。

References

[1]  谢全民, 龙源, 田作威. 爆破震动信号时频特征的三维分形特性研究[J]. 振动与冲击, 2010, 29(12): 122-126.Xie Quanmin, Long Yuan, Tian Zuowei.Three-dimension fractal study on time-frequencycharacteristic of blasting vibration signal [J]. Journal ofVibration and shock, 2010, 29(12): 122-126. (inChinese)
[2]  谢全民, 龙源, 钟明寿. 小波包与分形组合技术在爆破震动信号分析中的应用研究[J]. 振动与冲击, 2011,30(1): 12-16.Xie Quanmin, Long Yuan, Zhong Mingshou. Waveletand fractal portfolio technology in the application ofblasting vibration signal analysis [J]. Journal of Vibrationand Shock, 2011, 30(1): 12-16. (in Chinese)
[3]  Huang N E, Shen Z. The empirical mode decompositionand the hillbert spectrum for nonlinear andnon-stationary time series analysis [C]// FRS M B.Proceedings of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences.London: The Royal Society Press, 1998: 903-995.
[4]  Rilling G, Flandrin P. On empirical mode decompositionand its algorithms [C]// Grado. IEEE-EURASIPWorkshop on Nonlinear Signal and Image Processing.NSIP-03, June 2003.
[5]  徐长发, 李国宽. 实用小波方法[M]. 武昌: 华中科技大学出版社, 2005.Xu Changfa, Li Guokuan. Practical wavelet method [M].Wuchang: Huazhong University of Science andTechnology Press, 2005. (in Chinese)
[6]  李东文, 熊晓燕, 李博. 振动加速度信号处理探讨[J].机电工程技术, 2008, 37(9): 50-52.Li Dongwen, Xiong Xiaoyan, Li Bo. Research on theprocessing of vibration acceleration signal [J].Mechanical & Electrical Engineering Technology, 2008,37(9): 50-52. (in Chinese)
[7]  王广斌, 刘义伦, 金晓宏. 基于最小二乘原理的趋势项处理及其MATLAB 的实现[J]. 有色设备, 2005(5):4-8.Wang Guangbin, Liu Yilun, Jin Xiaohong. Treatment oftendency part and its matlab accomplishment based onleast-square principle [J]. Non-ferrous MetallurgicalEquipment, 2005(5): 4-8. (in Chinese)
[8]  朱学锋, 韩宁. 基于小波变换的非平稳信号趋势项剔除方法[J]. 飞行器测控学报, 2006, 25(5): 81-85.Zhu Xuefeng, Han Ning. Removal of trend fromnon-stationary signal based on wavelet transformation [J].Joural of Spacecraft TT&C Technology, 2006, 25(5):81-85. (in Chinese)
[9]  李夕兵, 张义平, 刘志祥. 爆破震动信号的小波分析与HHT变换[J]. 爆炸与冲击, 2005, 25(6): 528-535.Li Xibing, Zhang Yiping, Liu Zhixiang. Wavelet analysisand hilbert-huang transform of blasting vibration signal[J]. Explosion and Shock Waves, 2005, 25(6): 528-535.(in Chinese)
[10]  赵宝新, 张保成, 赵鹏飞. EMD 在非平稳随机信号消除趋势项中的研究与应用[J]. 机械制造自动化, 2009,38(5): 85-87.Zhao Baoxin, Zhang Baocheng, Zhao Pengfei. Researchon and application of emd in eliminating trend item ofnon-stationary random signals [J]. Machine Building &Automation, 2009, 38(5): 85-87. (in Chinese)
[11]  谢全民, 龙源, 钟明寿. 基于小波、小波包两种方法的爆破震动信号对比分析[J]. 工程爆破, 2009, 15(1): 5-9.Xie Quanmin, Long Yuan, Zhong Mingshou.Comparative analysis of blasting vibration signal basedon wavelet and wavelet packets transform [J].Engineering Blasting, 2009, 15(1): 5-9. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133