全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2012 

铰接杆系机构运动分岔分析新方法——类刚度法

DOI: 10.6052/j.issn.1000-4750.2011.01.0042, PP. 199-204

Keywords: 机构运动,运动分岔,奇异,广义切线刚度,类刚度,类刚度方程

Full-Text   Cite this paper   Add to My Lib

Abstract:

阐述了理想结构失稳时平衡路径出现分岔的本质是广义切线刚度为零,外荷载与结构位移之间失去可控性,结构出现奇异。基于机构运动分岔与结构平衡路径分岔的相似性,在机构中定义了类刚度为状态变量关于控制变量的导数。证明了当类刚度为零、无穷大或0/0型时,机构对应的控制变量与状态变量之间失去可控性,机构出现奇异;并对相应的奇异构型进行了归类。定义类刚度方程为类刚度等于零、无穷大或0/0型,提出了联立类刚度方程和协调方程求解机构运动分岔点的新方法——类刚度法。通过双自由度机构算例验证了此方法的可行性和优越性。

References

[1]  钱若军, 苏波, 林智斌. 工程结构中的几何位移分析理论、方法和应用研究[J]. 工程力学, 2008, 25(8): 70-76.Qian Ruojun, Su Bo, Lin Zhibin. Study on theory ofgeometric-displacement analysis, method and applicationin engineering structures [J]. Engineering Mechanics,2008, 25(8): 70-76. (in Chinese)
[2]  Tarnai T. Rigidity and kinematic bifurcation of structures[C]. 40th Anniversary Congress of the InternationalAssociation for Shell and Spatial Structures (IASS),Madrid, Spain: 1999, 1: B2.81-B2.90.
[3]  Lengyel A. Analogy between equilibrium of structuresand compatibility of mechanisms [D]. Oxford: Universityof Oxford, 2003.
[4]  Bandyopadhyay S, Ghosal A. Analysis of configurationspace singularities of closed-loop mechanisms andparallel manipulators [J]. Mechanism and MachineTheory, 2004, 39(5): 519-544.
[5]  陶亮. 铰接杆系的机构运动研究[D]. 杭州: 浙江大学,2008.Tao Liang. Mechanism research of pin-bar systems [D].Hangzhou: Zhejiang University, 2008. (in Chinese)
[6]  郭瑞琴. 并联机构奇异性分析及免奇异方法研究[D].上海: 同济大学, 2007.Guo Ruiqin. Study on singularity analysis andsingularity-free method of parallel manipulators [D].Shanghai: Tongji University, 2007. (in Chinese)
[7]  童根树. 钢结构平面内稳定[M]. 北京: 中国建筑工业出版社, 2004: 14-24.Tong Genshu. In-plane stability of steel structures [M].Beijing: Chinese Architecture and Building Press, 2004:14-24. (in Chinese)
[8]  陆启韶. 分岔与奇异性[M]. 上海: 上海科技教育出版社, 1995: 65-108.Lu Qishao. Bifurcation and singularity [M]. Shanghai:Shanghai Scientific and Technological EducationalPublishing House, 1995: 65-108. (in Chinese)
[9]  Kumar P, Pellegrino S. Computation of kinematic pathsand bifurcation points [J]. International Journal of Solidsand Structures, 2000, 37(46): 7003-7027.
[10]  沈金, 楼俊晖, 邓华. 杆系机构的可动性和运动分岔分析[J]. 浙江大学学报(工学版), 2009, 43(6): 1083-1089.Shen Jin, Lou Junhui, Deng Hua. Movability andkinematic bifurcation analysis for pin-bar mechanisms[J]. Journal of Zhejiang University (Engineering Science),2009, 43(6): 1083-1089. (in Chinese)
[11]  Gosselin C, Angeles J. Singularity analysis ofclosed-loop kinematic chains [J]. IEEE Transactions onRobotics and Automation, 1990, 6(3): 281-290.
[12]  Gosselin C. Kinematic analysis, optimization andprogramming of robotic manipulators [D]. Montreal,Quebec, Canada: McGill University,1988.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133