全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2012 

混凝土材料细观单元弹模非均匀统计特性研究

DOI: 10.6052/j.issn.1000-4750.2010.11.0797, PP. 106-115

Keywords: 混凝土,Voigt并联模型,单元等效弹性模量,Weibull分布,Kolmogorov检验,特征单元尺度

Full-Text   Cite this paper   Add to My Lib

Abstract:

假定混凝土是由骨料颗粒及砂浆基质组成的复合材料,基于Voigt并联模型对混凝土细观单元进行等效化,对单元的等效弹性模量进行统计分析。以Weibull分布为假设分布,采用图解法结合逐步回归优选法进行参数估计,探讨了混凝土细观单元弹性模量的分布形式,并根据Kolmogorov非参数检验,对假设分布进行了检验;对不同尺度下的细观单元弹性模量进行统计分析,并对骨料空间分布随机性的影响作了初步分析;最后对不同级配下混凝土材料的特征单元尺度问题进行了研究。结果表明:1)混凝土细观单元弹性模量的随机分布形式及参数具有尺度效应,且并不完全服从Weibull模型;2)混凝土细观单元弹性模量的变异性与尺度相关,随单元尺度的减小,变异性先随之增大后逐渐趋于稳定,它反映了混凝土材料细观不均匀程度存在一个合理的细观尺度表述的事实,对应于变异系数向平稳段过渡的拐点所对应的单元尺度称为特征尺度;3)二级、三级、四级配下混凝土材料的特征单元尺度分别为10mm、15mm和18mm;4)骨料空间分布的随机性对细观单元弹性模量随机分布特征影响可以忽略。

References

[1]  Bazant Z P, Tabbara M R, Kazemi M T. Random particlemodels for fracture of aggregate or fiber composites [J].Journal of Engineering Mechanics, ASCE, 1990, 116(8):1686-1705.
[2]  Mohamed A R, Hansen W. Micromechanical modelingof crack-aggregate interaction in concrete materials [J].Cement & Concrete Composites, 1999, 21(5/6): 349-359.
[3]  Schlangen E, Garbocai E J. Fracture simulation ofconcrete using lattice models: computational aspects [J].Engineering Fracture Mechanics, 1997, 57(2/3): 319-322.
[4]  Lilliu G, Van Mier J G M. 3D lattice type fracture modelfor concrete [J]. Engineering Fracture Mechanics, 2003,70(7/8): 927-941.
[5]  De Schutter G, Taerwe L. Random particle model forconcrete based on Delaunay Triangulation [J]. MaterialStructures, 1993, 26(156): 67-73.
[6]  刘光廷, 王宗敏. 用随机骨料模型数值模拟混凝土材料的断裂[J]. 清华大学学报(自然科学版), 1996, 36(1):84-89.Liu Guangting, Wang Zongmin. Numerical simulationstudy of fracture of concrete materials using randomaggregate model [J]. Journal of Tsinghua University(Science & Technology), 1996, 36(1): 84-89. (inChinese)
[7]  李靖华, 李果, 刘刚. 混凝土疲劳寿命规律预测新方法[J]. 大连理工大学学报, 1997, 37(增刊I): 115-121.Li Jinghua, Li Guo, Liu Gang. A new method forestimating fatigue life distribution law of concrete [J].Journal of Dalian University of Technology, 1997,37(Suppl I): 115-121. (in Chinese)
[8]  杨成球, 吴政. 全级配混凝土强度尺寸效应及变形特性研究[J]. 大连理工大学学报, 1997, 37(增刊I): 129-134.Yang Chengqiu, Wu Zheng. Investigation of size effecton strength and deformation behavior of full mixconcrete [J]. Journal of Dalian University of Technology,1997, 37(Suppl I): 129-134. (in Chinese)
[9]  彭一江, 黎保琨, 刘斌. 碾压混凝土细观结构力学性能的数值模拟[J]. 水利学报, 2001, 32(6): 19-22.Peng Yijiang, Li Baokun, Liu Bin. Numerical simulationof meso-level mechanical properties of roller compactedconcrete [J]. Journal of Hydraulic Engineering, 2001,32(6): 19-22. (in Chinese)
[10]  马怀发, 陈厚群, 黎保琨. 混凝土试件细观结构的数值模拟[J]. 水利学报, 2004, 35(10): 27-35.Ma Huaifa, Chen Houqun, Li Baokun. Meso-structurenumerical simulation of concrete specimens [J]. Journalof Hydraulic Engineering, 2004, 35(10): 27-35. (inChinese)
[11]  杜成斌, 尚岩. 三级配混凝土静、动载下力学细观破坏机制研究[J]. 工程力学, 2006, 23(3): 141-146, 125.Du Chengbin, Shang Yan. Study on micro-mechanicalfailure mechanism of the three-gradation concrete understatic and dynamic loadings [J]. Engineering Mechanics,2006, 23(3): 141-146, 125. (in Chinese) 浏览
[12]  党发宁, 梁昕宇, 田威, 陈厚群. 混凝土随机骨料模型尺寸效应的细观数值分析[J]. 岩土力学, 2010, 30(增刊2): 518-523.Dang Fa’ning, Liang Xinyu, Tian Wei, Chen Houqun.Numerical analysis of size effect on meso-concreterandom aggregate model [J]. Rock and Soil Mechanics,2010, 30(Suppl 2): 518-523. (in Chinese)
[13]  唐春安, 朱万成. 混凝土损伤与断裂-数值试验[M].北京: 科学出版社, 2003.Tang Chun’an, Zhu Wancheng. Numerical Simulationtests of concrete damnification and fracture [M]. Beijing:Science Press, 2003. (in Chinese)
[14]  赵吉坤. 混凝土四相复合模型的三维细观破坏模拟[J].土木建筑与环境工程, 2009, 31(4): 37-43.Zhao Jikun. 3D meso-scale failure simulation offour-phase composite concrete [J]. Journal of Civil,Architectural & Environmental Engineering, 2009, 31(4):37-43. (in Chinese)
[15]  杜修力, 金浏. 基于随机多尺度力学模型的混凝土力学特性研究[J]. 工程力学, 2011, 28(增刊I): 151-155.Du Xiuli, Jin Liu. Mechanical properties research onconcrete based on random multi-scale mechanical model[J]. Engineering Mechanics, 2011, 28(Sup.I): 151-155.(in Chinese) 浏览
[16]  徐积善, 何淅淅. 混凝土构件体积(尺寸)效应及抗裂塑性系数γ 值的初步分析研究[J]. 力学学报, 1986,18(4): 364-368.Xu Jishan, He Xixi. The analysis and experimentalresearch on volumetric effect of fracture strength and theplastic coefficient γ of concrete [J]. Acta MechanicaSinica, 1986, 18(4): 364-368. (in Chinese)
[17]  高峰, 谢和平. 脆性材料的分形统计强度理论[J]. 固体力学学报, 1996, 17(3): 239-245.Gao Feng, Xie Heping. Statistically fracture strengththeory for brittle materials [J]. Acta Mechanica SolidSinica, 1996, 17(3): 239-245. (in Chinese)
[18]  DLPT 5150, 水工混凝土试验规程[S]. 北京: 中国电力出版社, 2001.DLPT 5150, Test code of hydraulic concrete [S]. Beijing:China Electric Power Press, 2001. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133