全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2012 

强度失配对铝合金板焊接接头抗弹性能影响的有限元分析

DOI: 10.6052/j.issn.1000-4750.2011.03.0113, PP. 289-294

Keywords: 侵彻,铝合金,有限元,强度失配,抗弹性能

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过建立7.62mm穿甲弹侵彻铝合金板的模型,采用Johnson-Cook材料模型模拟研究了焊接接头的强度失配对铝合金板抗弹性能的影响。研究结果表明:当子弹侵彻铝合金焊接接头附近时,由于材料的不均匀变形,子弹会改变侵彻方向,其方向角的改变大小与子弹速度、侵入位置、弹头形状、强度失配比、靶板厚度有关;当子弹以低速侵彻铝合金板中间的软焊缝材料时,由于变形局部化,出现材料的抗弹性能低于纯焊缝材料的情况;由于子弹侵彻方向的改变,出现部分区域的抗弹性能高于铝合金基体材料的情况。研究结果为不均匀材料的抗弹性能研究提供参考。

References

[1]  Zhou Guxin, Wang Youqi, Liu Lingxia, et al. Initial study on ballistic performance and stress corrosion resistance property of weld seam of 2519-T87 armor plate [J]. Ordnance Meterial Science and Engineering, 2006, 29(6): 19―23. (in Chinese)
[2]  卢剑锋. 冲击载荷作用下材料和结构力学行为有限元模拟[D]. 北京: 清华大学, 2003.
[3]  Buyuk M, Kan S, Loikkanen M J. Explicit finite-element analysis of 2024-T3/T351 aluminum material under impact loading for airplane engine containment and fragment shielding [J]. Journal of Aerospace Enginering, 2009, 22: 287―295.
[4]  Zhu Jianfang, Wang Weili, Zeng Liang. Research on numerical simulation of anticartridge effect for certain aluminum alloy armor plate [J]. Acta Arrmamentarii, 2007, 28(4): 467―470. (in Chinese)
[5]  Dikshit S N, Sundararajan G. The penetration of thick steel plates by ogive shaped projectiles-experiment and analysis [J]. International Journal of Impact Engineering, 1992, 12: 373―408.
[6]  Wierzbicki T. Petalling of plates under explosive and impact loading [[J]. International Journal of Impact Engineering, 1999, 22: 935―954.
[7]  Luk V K, J F M, E A D. Dynamic spherical cavity expansion of strain-hardening materials [J]. Journal of Applied Mechanics, 1991, 58: 1―6.
[8]  Forrestal M J, Tzou D Y, Askari E, et al. Penetration into ductile metal targets with rigid spherical-nose rods [J]. International Journal of Impact Engineering, 1995, 16: 699―710.
[9]  Fawaz Z, Zheng W, Behdinan K. Numerical simulation of normal and oblique ballistic impact on ceramic composite armours [J]. Composite Structures, 2004, 63: 387―395.
[10]  Kay G. Failure modeling of titanium 6Al-4V and aluminum 2024-T3 with the Johnson-Cook material model [R]. US Department of Transportation, Federal Aviation Administration, 2003.
[11]  陈斌, 罗夕容, 曾首义. 穿甲子弹侵彻陶瓷/钢靶板的数值模拟研究[J]. 弹道学报, 2009, 21(1): 14―18.
[12]  Chen Bin, Luo Xirong, Zeng Shouyi. Simulation study on ceramic/mild steel targets penetrated by APP [J]. Journal of Ballistics, 2009, 21(1): 14―18. (in Chinese)
[13]  Warren T L, P K L. Penetration of 6061-T6511 aluminum targets by ogive-nosed VAR 4340 steel projectiles at oblique angles: Experiments and simulations [J]. International Journal of Impact Engineering, 2001, 25: 993―1022.
[14]  周古昕, 王有祁, 刘玲霞, 等. 2519-T87装甲板焊缝抗弹规律及抗应力腐蚀性能初探[J]. 兵器材料科学与工程, 2006, 29(6): 19―23.
[15]  Lu Jianfeng. Finite element simulation on mechanical behavior of materials and structures subjected to impact loading [D]. Beijing: Tsinghua University, 2003. (in Chinese)
[16]  Zhang X M, Li H J, Li H Z, et al. Dynamic property evaluation of aluminum alloy 2519A by split Hopkinson pressure bar [J]. Transactions of Nonferrous Metals Society of China, 2008, 18: 1―5.
[17]  朱建方, 王伟力, 曾亮. 某型铝合金抗弹效应数值仿真研究[J]. 兵工学报, 2007, 28(4): 467―470.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133