全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2012 

一维EEP自适应技术新进展:从线性到非线性

DOI: 10.6052/j.issn.1000-4750.2012.07.ST01, PP. 1-8

Keywords: 非线性,常微分方程,有限元,单元能量投影,自适应求解

Full-Text   Cite this paper   Add to My Lib

Abstract:

有限元后处理中超收敛计算的EEP(单元能量投影)法以及基于该法的自适应分析方法对线性ODE(常微分方程)问题的求解已经获得了全面成功,也推动了非线性ODE问题自适应求解的研究。经过研究,已经实现了一维有限元自适应分析技术从线性到非线性的跨越,该文意在对这方面的进展作一简要综述与报道。该文提出一种基于EEP法的一维非线性有限元自适应求解方法,其基本思想是通过线性化,将现有的线性问题自适应求解方法直接引入非线性问题求解,而无需单独建立非线性问题的超收敛计算公式和自适应算法,从而构成一个统一的、通用的非线性问题自适应求解算法。该文给出的数值算例表明所提出的算法高效、稳定、通用、可靠,解答可逐点按最大模度量满足用户给定的误差限,可作为先进高效的非线性ODE求解器的核心理论和算法。

References

[1]  袁驷, 王旭, 邢沁妍, 叶康生. 具有最佳超收敛阶的EEP法计算格式: I 算法公式[J]. 工程力学, 2007, 24(10): 1―5.
[2]  Yuan Si, Wang Xu, Xing Qinyan, Ye Kangsheng. A scheme with optimal order of super-convergence based on the element energy projection method - I formulation [J]. Engineering Mechanics, 2007, 24(10): 1―5. (in Chinese)
[3]  Yuan S, Xing Q, Wang X, Ye K. A self-adaptive strategy for one-dimensional finite element method based on EEP method with optimal super-convergence order [J]. Applied Mathematics and Mechanics, 2008, 29(5): 591―602.
[4]  隋昕. 基于EEP法的一维C1有限元超收敛解答和自适应分析[D]. 北京: 清华大学, 2010.
[5]  Sui Xin. Super-convergent solutions and adaptive analysis of 1D C1 FEM based on EEP method [D]. Beijing: Tsinghua University, 2010. (in Chinese)
[6]  肖川. 基于EEP法的一阶常微分方程组有限元自适应分析[D]. 北京: 清华大学, 2009.
[7]  袁驷, 王枚. 一维有限元后处理超收敛解答计算的EEP法[J]. 工程力学, 2004, 21(2): 1―9. 浏览
[8]  Yuan Si, Wang Mei. An element-energy-projection method for post-computation of super-convergent solutions in one-dimensional FEM [J]. Engineering Mechanics, 2004, 21(2): 1―9. (in Chinese) 浏览
[9]  Xiao Chuan. Adaptive FEM analysis for systems of first-order ODEs based on EEP super-convergent method [D]. Beijing: Tsinghua University, 2009. (in Chinese)
[10]  袁驷, 徐俊杰, 叶康生, 邢沁妍. 二维自适应技术新进展: 从有限元线法到有限元法[J]. 工程力学, 2011, 28(增刊II): 1―10.
[11]  Yuan Si, Xu Junjie, Ye Kangsheng, Xing Qinyan. New progress in self-adaptive analysis of 2D problems: From FEMOL to FEM [J]. Engineering Mechanics, 2011, 28(Suppl II): 1―10. (in Chinese)
[12]  Yuan S. The finite element method of lines [M]. Beijing-New York: Science Press, 1993: 387―388.
[13]  Jang T S, Baek H S, Paik J K. A new method for the non-linear deflection analysis of an infinite beam resting on a non-linear elastic foundation [J]. International Journal of Non-Linear Mechanics, 2011, 46(1): 339―346.
[14]  祁泉泉. 基于振动信号的结构参数识别系统方法研究[D]. 清华大学, 2011.
[15]  Qi Quanquan. Studies on methods for structural parameter identification system based on vibration signal [D]. Beijing: Tsinghua University, 2011. (in Chinese)
[16]  Holt J F. Numerical solution of nonlinear two-point boundary problems by finite difference methods [J]. Communication of the ACM 7, 1964, 6: 366―373.
[17]  Ascher U, Christiansen J, Russell R D. A collocation solver for mixed order systems of boundary value problem [J]. Mathematics of Computation, 1979, 33: 659―679.
[18]  DaDeppo D A, Schmidt R. Instability of clamped-hinged circular arches subjected to a point load [J]. ASME Journal of Applied Mechanics, 1975, 97: 894―896.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133