Han Yongyao, Zhao Guozhi, Fang Qing, et al. Numerical simulation of KE projectile penetration into multilayered ceramics [J]. Engineering Mechanics, 2006, 23(8): 182―186. (in Chinese)
Wang Yuanbo, Wang Xiaojun, Bian Liang, et al. CDM model and its application to numerical simulation on fiber-reinforced laminate under penetration [J]. Explosion and Shock Waves, 2008, 28(2): 172―177. (in Chinese)
[5]
Lim C T, Shim V P W, Ng Y H. Finite-element modeling of the ballistic impact of fabric armor [J]. International Journal of Impact Engineering, 2003, 28(1): 13―31.
[6]
Karim M R, Hoo Fatt M S. Rate-dependent constitutive equations for carbon fiber-reinforced epoxy [J]. Polymer Composites, 2006, 27(5): 513―528.
[7]
Wang W B, Shenoi R A. Investigating high strain rate behaviour of unidirectional composites by a visco-elastic model [J]. Journal of Ship Mechanics, 2009, 13(3): 406―415.
[8]
Gilat A, Goldberg R K, Roberts G D. Experimental study of strain-rate-dependent behavior of carbon/epoxy composite [J]. Composites Science and Technology, 2002, 62(10/11): 1469―1476.
[9]
Zhou Y X, Xia Y M. In situ strength distribution of carbon fibers in unidirectional metal-matrix composites-wires [J]. Composites Science and Technology, 2001, 61(14): 2017―2023.
[10]
Akil O, Yildirim U, Guden M. Effect of strain rate on the compression behavior of a woven fabric S2-glass fiber reinforced vinylester composite [J]. Polymer Testing, 2003, 22(8): 883―887.
[11]
Hosur M V, Alexander J, Vaidya U K, et al. Studies on the off-axis high strain rate compression loading of satin weave carbon/epoxy composites [J]. Composite Structures, 2004, 63(1): 75―85.
[12]
Hashin Z. Failure criteria for unidirectional fiber composites [J]. Journal of Applied Mechanics, 1980, 47(2): 329―334.
[13]
Camanho P P, Davila C G. Mixed-mode decohesion finite elements for the simulation of delamination in composite materials, NASA/TM-2002-211737 [R]. Washington: NASA, 2002.
[14]
Morye S S, Hine P J, Duckett R A, et al. Modeling of the energy absorption by polymer composites upon ballistic impact [J]. Composites Science and Technology, 2000, 60(14): 2631―2642.
[15]
Kim H, Welch D A, Kedward K T. Experimental investigation of high velocity ice impacts on woven carbon/epoxy composite panels [J]. Composites Part A, 2003, 34(1): 25―41.
[16]
Ulven C, Vaidya U K, Hosur M V. Effect of projectile shape during ballistic perforation of VARTM carbon/epoxy composite panels [J]. Composite Structures, 2003, 61(1/2): 143―150.
[17]
Tan V B C, Khoo K J L. Perforation of flexible laminates by projectiles of different geometry [J]. International Journal of Impact Engineering, 2005, 31(7): 793―810.
[18]
顾伯洪. 织物弹道贯穿性能分析计算[J]. 复合材料学报, 2002, 19(6): 92―96.
[19]
Gu Bohong. Analytical modeling of woven fabric under ballistic perforation [J]. Acta Materiae Compositae Sinica, 2002, 19(6): 92―96. (in Chinese)
[20]
Wen H M. Predicting the penetration and perforation of FRP laminates struck normally by projectiles with different nose shapes [J]. Composite Structures, 2000, 49(3): 321―329.
Qin Yue, Wen Heming, He Tao. Penetration and perforation of FRP laminates under normal impact by ogival-nosed projectiles [J]. Acta Materiae Compositae Sinica, 2007, 24(2): 131―136. (in Chinese)