全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2013 

梯度分布对密度梯度金属空心球阵列动力学性能的影响

DOI: 10.6052/j.issn.1000-4750.2011.06.0335, PP. 425-431

Keywords: 密度梯度金属空心球阵列,梯度分布,能量吸收,冲击,LS-DYNA

Full-Text   Cite this paper   Add to My Lib

Abstract:

梯度及梯度排布是密度梯度多孔材料设计中的关键性问题。该文基于分层梯度金属空心球阵列模型,重点讨论了不同冲击速度下,梯度分布对金属空心球阵列动力学性能的影响。研究结果表明:在低速冲击下,梯度金属空心球阵列的动力学响应只取决于梯度的大小而不敏感于梯度的空间分布;而在中高速冲击下,梯度金属空心球阵列的动力响应不仅取决于梯度的大小,而且必须考虑梯度的空间分布。一定冲击速度下,梯度分布决定了材料内部的应力分布和材料的能量吸收过程,但吸收的总能量由材料的相对密度决定。考虑到对被冲击防护结构的保护,从冲击端高密度向远端低密度的梯度分布更有优势。该文的结论为实现多孔材料冲击动力学性能的多目标优化设计提供了新的设计思路。

References

[1]  Gibson L J, Ashby M F. Cellular solids: Structure and properties [M]. 2nd ed. Cambridge: Cambridge University Press, 1997.
[2]  Andersen O, Waag U, Schneider L, Stephani G, Kieback B. Novel metallic hollow sphere structures [J]. Advanced Engineering Materials, 2000, 2: 192―195.
[3]  Augustim C, Hungerbach W. Production of hollow spheres (HS) and hollow sphere structures (HSS) [J]. Materials Letters, 2009, 63: 1109―1112.
[4]  Friedl O, Motz C, Peterlik H, Puchegger S, Reger N, Pippan R. Experimental investigation of mechanical properties of metallic hollow sphere structures [J]. Metallurgical and Materials Transactions B, 2008, 39: 135―146.
[5]  Lim T J, Smith B, McDowell D L. Behaviour of a random hollow sphere metal foam [J]. Acta Materialia, 2002, 50: 2867―2879.
[6]  Sanders W S, Gibson L J. Mechanics of BCC and FCC hollow-sphere foams [J]. Materials Science and Engineering: A, 2003, 352: 150―161.
[7]  Vesenjak M, Fiedler T, Ren Z, Ochsner A. Behaviour of syntactic and partial hollow sphere structures under dynamic loading [J]. Advanced Engineering Materials, 2008, 10: 185―191.
[8]  Dong X L, Gao Z Y, Yu T X. Dynamic crushing of thin-walled spheres: An experimental study [J]. International Journal of Impact Engineering, 2008, 35: 717―726.
[9]  Ruan H H, Gao Z Y, Yu T X. Crushing of thin-walled spheres and sphere arrays [J]. International Journal of Mechanical Sciences, 2006, 48: 117―133.
[10]  Liu Y, Wu H X, Lu G X, Wang B. Dynamic properties of density graded thin-walled metal hollow sphere arrays [J]. Mechanics of Advanced Material Structures, 2011. (accepted)
[11]  Ajdari A, Canavan P, Nayeb-Hashemi H, Warner G. Mechanical properties of functionally graded 2-D celluar structures: A finite element simulation [J]. Materials Science Engineering A, 2009, 499: 434―439.
[12]  El-Hadek M A, Tippur H V. Dynamic fracture parameters and constraint effects in functionally graded syntactic epoxy foams [J]. International Journal of Solids and Structures, 2003, 40: 1885―1906.
[13]  Zeng H B, Pattofatto S, Zhao H, Girard Y, Fascio V. Impact behavior of hollow sphere agglomerates with density gradient [J]. International Journal of Mechanical Sciences, 2010, 52: 680―688.
[14]  LSTC. LS-DYNA keyword user’s manual [M]. Livermore Software Technology Corporation, 2007.
[15]  Gibson L G. Mechanical behaviour of metallic foams [J]. Annual Review of Materials Science, 2000, 30: 191―227.
[16]  Tan P J, Reid S R, Harrigan J J, Zou Z, Li S. Dynamic compressive strength properties of aluminum foam. Part II-shock theory and comparison with experimental data and numerical models [J]. Journal of the Mechanics and Physics Solids, 2005, 53: 2206―2230.
[17]  Kooistra G W, Deshpande V S, Wadley H N G. Compressive behavior of age hardenable tetrahedral lattice truss structures made from aluminum [J]. Acta Materialia, 2004, 52: 4229―4237.
[18]  Tan P J, Reid S R, Harrigan J J, Zou Z, Li S. Dynamic compressive strength properties of aluminum foam. Part I-experimental data and observations [J]. Journal of the Mechanics and Physics of Solids, 2005, 53: 2174―2205.
[19]  Lu G X, Yu T X. Energy absorption of structures and materials [M]. Cambridge: CRC Press, Woodhead Publishing Limited, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133