全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2013 

入口扰动数据周期对湍流预混射流火焰直接模拟的影响

DOI: 10.6052/j.issn.1000-4750.2011.06.0404, PP. 45-51

Keywords: 湍流预混射流火焰,直接数值模拟,湍流能谱,入口扰动速度,扰动数据周期

Full-Text   Cite this paper   Add to My Lib

Abstract:

该文对湍流平面射流预混火焰进行了直接数值模拟。射流入口的扰动速度数据依据各向同性衰变湍流的能谱生成,研究了扰动数据周期的选取对模拟结果的影响。表明当入口扰动数据的周期大于总的计算时间时,得到的不同时刻的瞬态模拟结果有较明显的差异,并得到了时均定常的气体平均温度、速度和组分浓度分布。而当扰动数据周期小于总的计算时间时,入口扰动数据的周期性会对模拟结果产生影响,导致瞬态结果出现周期性。

References

[1]  Klein M, Sadiki A, Janicka J. A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations [J]. Journal of Computational Physics, 2003, 186(2): 652―665.
[2]  Sankaran R, Hawkes E R, Chen J H, Lu T F, Law C K. Structure of a spatially developing turbulent lean methane-air Bunsen flame [J]. Proceedings of the Combustion Institute, 2007, 31: 1291―1298.
[3]  Lee S, Lele S K, Moin P. Simulation of spatially evolving turbulence and the applicability of Taylor’s hypothesis in compressible flow [J]. Physics of Fluids A, 1992, 4(7): 1521―1530.
[4]  Stanley S A, Sarkar S, Mellado J P. A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation [J]. Journal of Fluid Mechanics, 2002, 450: 377―407.
[5]  Hawkes E R, Sankaran R, Sutherland J C, Chen J H. Scalar mixing in direct numerical simulations of temporally evolving plane jet flames with skeletal CO/H2 kinetics [J]. Proceedings of the Combustion Institute, 2007, 31: 1633―1640.
[6]  Kennedy C A, Carpenter M H. Several new numerical methods for compressible shear-layer simulations [J]. Applied Numerical Mathematics, 1994, 14(4): 397―433.
[7]  Kennedy C A, Carpenter M H, Lewis R M. Low-storage, explicit Runge-Kutta schemes for the compressible Navier-Stokes equations [J]. Applied Numerical Mathematics, 2000, 35(3): 177―219.
[8]  Poinsot T, Veynante D. Theoretical and numerical combustion, second edition [M]. Philadelphia, PA, USA: Edwards, 2005: 159―160.
[9]  Pope S B. Turbulent flows [M]. Cambridge, UK: Cambridge University Press, 2000: 346―347.
[10]  Poinsot T J, Lele S K. Boundary-conditions for direct simulations of compressible viscous flows [J]. Journal of Computational Physics, 1992, 101(1): 104―129.
[11]  Baum M, Poinsot T, Thévenin D. Accurate boundary conditions for multicomponent reactive flows [J]. Journal of Computational Physics, 1995, 116(2): 247―261.
[12]  Sutherland J C, Kennedy C A. Improved boundary conditions for viscous, reacting, compressible flows [J]. Journal of Computational Physics, 2003, 191(2): 502―524.
[13]  Sutherland J C. Evaluation of mixing and reacting models for large-eddy simulation of nonpremixed combustion using direct numerical simulation [D]. Salt Lake City, UT, USA: The University of Utah, 2004.
[14]  Haworth D C, Poinsot T J. Numerical simulations of Lewis number effects in turbulent premixed flames [J]. Journal of Fluid Mechanics, 1992, 244: 405―436.
[15]  Hawkes E R, Sankaran R, Chen J H. Estimates of the three-dimensional flame surface density and every term in its transport equation from two-dimensional measurements [J]. Proceedings of the Combustion Institute, 2011, 33: 1447―1454.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133