全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2013 

复合材料变截面旋转薄壁悬臂梁自由振动分析

DOI: 10.6052/j.issn.1000-4750.2011.06.0395, PP. 37-43

Keywords: 复合材料,薄壁梁,固有频率,变截面,转速,ANSYS软件

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于拉格朗日方程推导出复合材料封闭变截面旋转薄壁梁的自由振动方程。与基于哈密顿原理的动力学建模方法相比,该文所采用的方法更为简洁。此外,在薄壁梁的结构模型中还考虑除横向剪切外的扭转、拉伸和弯曲引起的翘曲,具有考虑翘曲因素多的特点。给出了两种刚度配置下的变矩形截面旋转悬臂直梁的自由振动方程简化形式及其相应的迦辽金法求解的固有频率。基于大型通用有限元软件ANSYS,计算了薄壁变截面旋转悬臂梁的固有频率,并且与迦辽金法的求解结果进行了对比。分析了复合材料的弹性耦合、铺层角度、截面变化和旋转速度对薄壁梁的自由振动的影响。

References

[1]  Choi Seung-Chan, Park Jae-Sang, Kim Ji-Hwan. Active damping of rotating composite thin-walled beams using MFC actuators and PVDF sensors [J]. Composite Structures, 2006, 76: 362―374.
[2]  Zhao Yonghui, Hu Haiyan. Structural modeling and aeroelastic analysis of high-aspect-ratio composite wings [J]. Chinese Journal of Aeronautics, 2005, 18(1): 25―30.
[3]  易中, 周丽珍. 分析力学初步[M]. 北京: 冶金工业出版社, 2006: 38―42.
[4]  Yi Zhong, Zhou Lizhen. Basic theory of analytical mechanics [M]. Beijing: Metallurgical Industry Press, 2006: 38―42. (in Chinese)
[5]  Ma Jingmin, Ren Yongsheng, Tan Tao. Vibration characteristics of composite thin-wall beams [C]. Advanced Material Research. Civil Engineering Architecture and Building Materials. Haikou: Trans Technology Publication Limited, 2011, 250/251/252/253: 3993―4000.
[6]  Thomsen J J. Vibrations and stability: Advanced theory, analysis, and tools [M]. Berlin-Heidelberg-New York: Springer-Verlag, 2003: 112―126.
[7]  Meirovitvh L. Computational methods in structural dynamics [M]. Alphen aan den Rijn, The Netherlands: Sijthoff-Noordhoff, 1980: 178―192.
[8]  Hodges D H, Dowell E H. Nonlinear equations of notion for the elastic bending and torsion of twisted nonuniform rotor blades [R]. Washington District of Columbia: National Aeronautics and Space Administration, 1974.
[9]  任勇生, 张明辉. 水平轴风力机叶片的弯扭耦合气弹稳定性研究[J]. 振动与冲击, 2010, 29(7): 196―200.
[10]  Ren Yongsheng, Zhang Minghui. Aeroelastic stability of a horizontal axis wind turbine blade with bending-torsion coupled [J]. Journal of Vibration and Shock, 2010, 29(7): 196―200. (in Chinese)
[11]  Barbero E J. Introduction to composite material design [Z]. Philadelphia: Taylor & Francis Incorporated, 1999.
[12]  Jonesm P M. Mechanics of composite materials [M]. Philadelphia: Taylor & Francis Incorporated, 1999: 26―37.
[13]  Song O, Librescu L. Structural modeling and free vibration analysis of rotating composite thin-walled beams [J]. Internal Journal of American Helicopter Society, 1997, 42(4): 358―369.
[14]  Chandiraman N K, Librescu L, Shete C D. On the free vibration of rotating composite beams using a higher-order shear formulation [J]. Aerospace Science and Technology, 2002, 6: 545―561.
[15]  Oh S-Y, Song O, Libresc Lu. Effects of pretwist and presetting on coupled bending vibrations of rotating thin-walled composite beams [J]. Internal Journal of Solids and Structures, 2003, 40: 1203―1224.
[16]  Librescu L, Na S S. Active vibration control of doubly tapered thin-walled beams using piezoelectric actuation [J]. Thin-Walled Structures, 2001, 39: 65―82.
[17]  Na S S, Librescu L. Dynamic behavior of aircraft wings modeled as doubly-tapered composite thin-walled beams [C]. Recent Advances in Solids and Structures, New York: ASME, 1999(398): 59―68.
[18]  Na Sungsoo, Liberscu L, Shim Jae Kyung. Modeling and bending vibration control of nonuniform thin-walled rotating beams incorporating adaptive capabilities [J]. Mechanical Sciences, 2003, 45: 1347―1367.
[19]  Armanios A, Badir A M. Free vibration analysis of anisotropic thin-walled closed-section beams [J]. American Institute of Aeronautics and Astronautics Journal, 1995, 33(10): 1905―1910.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133