Danzer R, Lube T, Supancic P, et al. Fracture of ceramics [J]. Advanced Engineering Materials, 2008, 10(4): 275―298.
[2]
Kingery W D. Factors affecting thermal shock resistance of ceramic material [J]. Journal of the American Ceramic Society, 1955, 38(1): 3―15.
[3]
Hasselman D P H. Elastic energy at fracture and surface energy as design criteria for thermal shock [J]. Journal of the American Ceramic Society, 1963, 46(11): 535―540.
[4]
Bahr H A, Fischer G, Weiss H J. Thermal-shock crack patterns explained by single and multiple crack propagation [J]. Journal of the American Ceramic Society, 1986, 52(11): 2716―2720.
[5]
Song F, Liu Q N, Meng S H, et al. A universal Biot number determining the susceptibility of ceramics to quenching [J]. Europhysics Letters, 2009, 87(5): 54001.
[6]
Liu Q N, Song F, Meng S H, et al. Universal Biot number determining stress duration and susceptibility of ceramic cylinders to quenching [J]. Philosophical Magazine, 2010, 90(13): 1725―1732.
[7]
Liu Q N, Meng S H, Jiang C P, et al. Critical Biot’s number for determination of the sensitivity of spherical ceramics to thermal shock [J]. Chinese Physics Letters, 2010, 27(8): 088104.
Zhang Shiyuan, Zheng Bailin, He Pengfei. Mechanics analysis of an edge crack of thermal barrier coatings under thermal shock with non-Fourier model [J]. Engineering Mechanics, 2010, 27(10): 47―51, 64. (in Chinese)
[10]
Han J C, Wang B L. Thermal shock resistance of ceramics with temperature-dependent material properties at elevated temperature [J]. Acta Materialia, 2011, 59: 1373―1382.
[11]
Jenkins D R. Optimal spacing and penetration of cracks in a shrinking slab [J]. Physical Review E, 2005, 71(5): 056117.
Li Weite, Huang Baohai, Bi Zhongbo. Analysis and application of thermal stress theory [M]. Beijing: China Electric Power Press, 2004: 59―63. (in Chinese)