全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2013 

陶瓷材料热冲击开裂机理与裂纹间距预报

DOI: 10.6052/j.issn.1000-4750.2011.08.0508, PP. 458-463

Keywords: 陶瓷材料,热冲击,裂纹间距,最小能量原理,间接测量法

Full-Text   Cite this paper   Add to My Lib

Abstract:

该文研究陶瓷材料热冲击开裂机理和热冲击裂纹的分布规律。1mm厚的99Al2O3陶瓷薄片的水淬实验显示:裂纹间距随热冲击温差增大而减小,在同一热冲击温差下,5个试件中的各个裂纹间距与平均间距的偏差不超过7%。理论上,结合传热学和力学方法,计算了热冲击过程中试件的瞬态温度场和应力场,阐述了陶瓷材料热冲击条件下的开裂机理。以裂纹间距和深度作为变量,利用最小能量原理,发展了热冲击裂纹间距预报的有限元方法。由于从文献获得的毕渥数数据分散度很大,并且难以直接测量,因此发展了“间接测量法”,逆向估计了实验过程中的毕渥数,并在其他温度点获得了与实验吻合很好的裂纹间距数值预报结果。该文的研究对深入理解陶瓷材料的热冲击失效机制,对陶瓷材料的改性和研制有重要的意义。

References

[1]  Danzer R, Lube T, Supancic P, et al. Fracture of ceramics [J]. Advanced Engineering Materials, 2008, 10(4): 275―298.
[2]  Kingery W D. Factors affecting thermal shock resistance of ceramic material [J]. Journal of the American Ceramic Society, 1955, 38(1): 3―15.
[3]  Hasselman D P H. Elastic energy at fracture and surface energy as design criteria for thermal shock [J]. Journal of the American Ceramic Society, 1963, 46(11): 535―540.
[4]  Bahr H A, Fischer G, Weiss H J. Thermal-shock crack patterns explained by single and multiple crack propagation [J]. Journal of the American Ceramic Society, 1986, 52(11): 2716―2720.
[5]  Song F, Liu Q N, Meng S H, et al. A universal Biot number determining the susceptibility of ceramics to quenching [J]. Europhysics Letters, 2009, 87(5): 54001.
[6]  Liu Q N, Song F, Meng S H, et al. Universal Biot number determining stress duration and susceptibility of ceramic cylinders to quenching [J]. Philosophical Magazine, 2010, 90(13): 1725―1732.
[7]  Liu Q N, Meng S H, Jiang C P, et al. Critical Biot’s number for determination of the sensitivity of spherical ceramics to thermal shock [J]. Chinese Physics Letters, 2010, 27(8): 088104.
[8]  张士元, 郑百林, 贺鹏飞. 热冲击条件下基于非傅里叶热传导的热涂层单边裂纹问题力学分析[J]. 工程力学, 2010, 27(10): 47―51, 64.
[9]  Zhang Shiyuan, Zheng Bailin, He Pengfei. Mechanics analysis of an edge crack of thermal barrier coatings under thermal shock with non-Fourier model [J]. Engineering Mechanics, 2010, 27(10): 47―51, 64. (in Chinese)
[10]  Han J C, Wang B L. Thermal shock resistance of ceramics with temperature-dependent material properties at elevated temperature [J]. Acta Materialia, 2011, 59: 1373―1382.
[11]  Jenkins D R. Optimal spacing and penetration of cracks in a shrinking slab [J]. Physical Review E, 2005, 71(5): 056117.
[12]  张玉龙, 马建平. 实用陶瓷材料手册[M]. 北京: 化学工业出版社, 2006: 337―352.
[13]  Zhang Yulong, Ma Jianping. Applicable Ceramic material manual [M]. Beijing: Chemical Industry Press, 2006: 337―352. (in Chinese)
[14]  张清纯. 陶瓷材料的力学性能[M]. 北京: 科学出版社, 1987: 62―67.
[15]  Zhang Qingchun. Mechanical properties of ceramics [M]. Beijing: Science Press, 1987: 62―67. (in Chinese)
[16]  Holman J P. Heat transfer [M]. New York: MacGraw- Hill, Inc., 2002: 139―143.
[17]  李维特, 黄保海, 毕仲波. 热应力理论分析及应用[M]. 北京: 中国电力出版社, 2004: 59―63.
[18]  Li Weite, Huang Baohai, Bi Zhongbo. Analysis and application of thermal stress theory [M]. Beijing: China Electric Power Press, 2004: 59―63. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133