全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2013 

起重机箱形伸缩臂的动力稳定性分析

DOI: 10.6052/j.issn.1000-4750.2011.10.0710, PP. 377-382

Keywords: 机械工程,动力稳定性,有限单元法,箱形伸缩臂,周期载荷

Full-Text   Cite this paper   Add to My Lib

Abstract:

应用计及轴力效应的有限单元法对起重机箱形伸缩臂在轴向周期载荷作用下的动力稳定性即参数共振问题进行分析研究。运用Lagrange方程建立周期载荷作用下梁杆系统在小变形情况下参数振动方程,确定箱形伸缩臂结构动力不稳定边界的临界频率方程,并讨论阻尼对箱形伸缩臂动力稳定性的影响。分析结果表明:运用计及轴力效应的有限单元法求解动力稳定问题是非常精确和有效的;随着阻尼系数的逐渐增大,其动力不稳定区域逐渐减小,且对第二动力不稳定区域影响更加明显。

References

[1]  陆念力, 兰朋, 白桦. 起重机箱型伸缩臂稳定性分析的精确理论解[J]. 哈尔滨建筑大学学报, 2000, 33(2): 89―93.
[2]  Lu Nianli, Lan Peng, Bai Hua. Precise stability analysis of telescopic boom [J]. Journal of Harbin University of Civil Engineering and Architecture, 2000, 33(2): 89―93. (in Chinese)
[3]  Park J S, Stallings J M. Lateral-torsional buckling of stepped beams with continuous bracing [J]. Journal of Bridge Engineering, 2005, 10(1): 87―95.
[4]  Naguleswaran S. Vibration and stability of an Euler-Bernoulli beam with up to three-step changes in cross-section and in axial force [J]. International Journal of Mechanical Science, 2003, 45(9): 1563―1579.
[5]  Zhang Hongsheng, Lu Nianli, Lan Peng. Buckling of stepped beams with elastic supports [J]. Journal of Harbin Institute of Technology, 2009, 16(3): 436―440.
[6]  Bolotin V V. The dynamic stability of elastic system [M]. San Francisco: Holden-Day, 1964.
[7]  孙强. 直杆的动力稳定性分析[J]. 安徽建筑工业学院学报(自然科学版), 1996, 4(1): 38―43.
[8]  Sun Qiang. Analysis dynamical stability of rod [J]. Journal of Anhui Institute of Architecture and Industry (Natural Science Edition), 1996, 4(1): 38―43. (in Chinese)
[9]  孙强, 杨大军. 弹性介质中杆的动力稳定性研究[J]. 工程力学, 1997, 14(1): 87―91.
[10]  Sun Qiang, Yang Dajun. Research on dynamic stability of bars in elastic medium [J]. Engineering Mechanics, 1997, 14(1): 87―91. (in Chinese)
[11]  李晓东, 王秀丽. 屈曲约束支撑的动力稳定性分析[J]. 华中科技大学学报(城市科学版), 2008, 25(4): 223―226.
[12]  Li Xiaodong, Wang Xiuli. Dynamic stability analysis of buckling restrained brace [J]. Journal of Huazhong University of Science and Technology (Urban Science Edition), 2008, 25(4): 223―226. (in Chinese)
[13]  Ratko Pavlovic, Predrag Kozic. Dynamic stability of a thin-walled beam subjected to axial load-sand end moments [J]. Journal of Sound and Vibration, 2007, 301(3/4/5): 690―700.
[14]  De Rosa M A, Auciello N M. Dynamic stability analysis and DQM for beams with variable cross-section [J]. Mechanics Research Communications, 2008, 35(3): 187―192.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133