全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2013 

考虑风向风速联合分布的输电塔线体系风振疲劳研究

DOI: 10.6052/j.issn.1000-4750.2011.08.0525, PP. 315-322

Keywords: 乘法定理,风速,风向,联合分布,风致疲劳,输电塔线体系

Full-Text   Cite this paper   Add to My Lib

Abstract:

输电塔线体系属于风敏感结构体系,在结构设计和实际工作中风荷载均起控制作用。然而,在风荷载计算以及工程研究领域中对风向风速的处理至关重要,但因两者之间的相关性导致了建立联合分布模型的困难。为此,该文基于乘法定理以重庆市日极值风速为对象,建立了风速条件概率密度的混合模型,改善了单一概率分布模型的不足。与此同时,根据风向方位记录数据建立了风向角的概率密度函数模型,并结合风速条件概率密度的混合模型,给出了风向风速的离散-连续混合联合分布模型。然后,将风向风速联合分布模型与Miner线性疲劳累积损伤理论相结合,推导出了输电塔的风振疲劳计算方法。最后,采用此建议算法对特高压输电塔线结构体系进行了风振疲劳分析,有效地考虑了风向风速对输电塔体风振疲劳的影响,减少了计算量,提高了结构分析的计算效率。

References

[1]  Deng Hongzhou, Wen Yinglong, He Pengfei. Analysis of fatigue reliability of the lattice guyed-mast along wind vibration [J]. Special Structures, 2004, 21(2): 31―35. (in Chinese)
[2]  欧进萍, 叶骏. 结构风振的概率疲劳累积损伤[J]. 振动工程学报, 1993, 6(2): 164―169.
[3]  EN1993-1-1:2006. Eurocode 3: Design of steel structures Part 1-5: Plated structural elements [S]. Brussels, Belgiam: European Communities for Standardization, Europe, 2006.
[4]  Ou Jinping, Ye Jun. Probabilistic fatigue cumulative damage of wind-resistance structures [J]. Journal of Vibration Engineering, 1993, 6(2): 164―169. (in Chinese)
[5]  汪之松, 李正良, 肖正直, 等. 输电塔线耦合体系的风振疲劳时域分析[J]. 华南理工大学学报(自然科学版), 2010, 38(4): 106―111.
[6]  Seismic provisions for structural steel buildings [S]. American Institute Steel Construction, Chicago, U.S.A., 2005.
[7]  Wang Zhisong, Li Zhengliang, Xiao Zhengzhi, et al. Wind-induced fatigue analysis in time domain for transmission tower-line coupling system [J]. Journal of South China University of Technology (Natural Science Edition), 2010, 38(4): 106―111. (in Chinese)
[8]  Zheng Yi, Tsutomu Usami, Ge Hanbin. Ductility of thin-walled steel box stub-columns [J]. Journal of Structural Engineering, 2000, 126(11): 1304―1311.
[9]  Bendat J S, Piersol A G. Random data: analysis and measurement procedures [M]. New York: John Wiley & Sons Inc., 2000: 40―56.
[10]  Usami T, Ge H B. Cyclic behavior of thin-walled steel structures—Numerical analysis [J]. Thin-Walled Structures, 1998, 32: 41―80.
[11]  Gentle J E. Elements of computational statistics [M]. New York: Springer-Verlag, Inc., 2002: 110―126.
[12]  陈隽, 赵旭东. 总体样本风速风向联合概率分析方法[J]. 防灾减灾工程学报, 2009, 29(1): 63―70.
[13]  Fukumoto Y, Lee G C. Stability and ductility of steel structures under cyclic loading [M]. London: CRC Press, 1992: 285―296.
[14]  董永涛, 张耀春. 均匀受压钢板件的变形能力和承载能力[J]. 钢结构, 1997, 12(2): 20―26.
[15]  Chen Juan, Zhao Xudong. Analytical method of joint probability density function of wind speed and direction from parent population [J]. Journal of Disaster Preventing and Mitigation Engineering, 2009, 29(1): 63―70. (in Chinese)
[16]  Jones R H. Fitting a circular distribution to a histogram [J]. Journal of Applied Meteorology, 1976, 15: 94―98.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133