全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2013 

结构倒塌时楼板碰撞效应的简化评估方法

DOI: 10.6052/j.issn.1000-4750.2011.08.0522, PP. 306-314

Keywords: 结构倒塌,楼板碰撞,简化评估方法,能量转移,连续倒塌

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对上楼板、下楼板碰撞的两种极限状态——完全塑性碰撞和完全刚性碰撞,开展了碰撞过程中动能转移量的理论分析,考察了上板、下板质量比对动能转移量的影响,同时进行了2种极限状态下动能转移量的数值计算;提出了结构倒塌时上板、下板碰撞效应的一种简化评估方法,具体包括2个步骤:1)下板的非线性静力分析;2)采用能量平衡原理估算上板的最大允许重力荷载。研究表明:上板、下板质量比等于1时,完全塑性碰撞后的总动能转移百分比和下板动能转移百分比分别为33.3%和16.7%;完全刚性碰撞后的下板动能转移百分比与碰撞前上板速度、碰撞后上板周边反弹速度等参数有关,上板、下板质量比等于1时下板动能转移百分比为44.4%~97.1%;采用通用软件ABAQUS计算得到的两种极限状态对应的下板动能转移百分比,总体上与理论分析结果较为接近。

References

[1]  肖正直. 特高压输电塔风振响应及等效风荷载研究[D]. 重庆: 重庆大学, 2009.
[2]  Xiao Zhengzhi. Wind-induced response analysis and equivalent wind loads of UHV transmission tower [D]. Chongqing: Chongqing University, 2009. (in Chinese)
[3]  汪之松. 特高压输电塔风振响应及风振疲劳性能研究[D]. 重庆: 重庆大学, 2009.
[4]  Zineddin M, Krauthammer T. Dynamic response and behavior of reinforced concrete slabs under impact loading [J]. International Journal of impact Engineering, 2007, 34(1): 1517―1534.
[5]  Wang Zhisong. Study on wind-induced response and fatigue of UHV transmission tower-line coupled system [D]. Chongqing: Chongqing University, 2009. (in Chinese)
[6]  李正良, 肖正直, 韩枫, 等. 1000kV汉江大跨越特高压输电塔线体系气动弹性模型的设计与风洞试验[J]. 电网技术, 2008, 32(12): 1―5.
[7]  Zineddin M. Simulation of reinforced concrete slab behavior under impact loading [C]. Proceedings of the AEI 2008 Conference: Building Integration Solutions, New York, 2008: 1―8.
[8]  Li Zhengliang, Xiao Zhengzhi, Han Feng, et al. Aeroelastic model design and wind tunnel tests of 1000kV Hanjiang long span transmission line system [J]. Power System Technology, 2008, 32(12): 1―5. (in Chinese)
[9]  汪之松, 李正良, 肖正直, 等. 1000kV双回路特高压输电塔等效静风荷载研究[J]. 电网技术, 2009, 33(14): 6―12.
[10]  Wang Zhisong, Li Zhengliang, Xiao Zhengzhi, et al. Equivalent along-wind direction static wind load of transmission tower for 1000kV double circuit transmission lines on same tower [J]. Power System Technology, 2009, 33(14): 6―12. (in Chinese)
[11]  王世村. 高耸结构风振响应和风振疲劳研究[D]. 杭州:浙江大学, 2005.
[12]  Wang Shicun. Study on wind-induced vibration and wind-induced fatigue on high-rise structures [D]. Hangzhou: Zhejiang University, 2005. (in Chinese)
[13]  Crandall S H, Mark W D. Rand vibration in mechanical systems [M]. New York: Academic Press, 1963: 74―93.
[14]  Winterstein S R. No-linear vibration models for extremes and fatigue [J]. Journal of Engineering Mechanics, ASCE, 1986, 114: 1772―1790.
[15]  Wirsching P H. Fatigue under wide band random stresses [J]. Journal of the Structural Division, 1980, 106: 1593―1607.
[16]  Holmes J D. Fatigue life under along-wind loading: closed-form solution [J]. Engineering Structures, 2002, 24: 109―114.
[17]  Havard D G, Perry O C. Lattice tower member fatigue and its control using a novel damping scheme [J]. Power Engineering Society Summer Meeting, IEEE, Seattle, WA, USA, 200, 4: 2560―2565.
[18]  Repetto M P, Solari G. Dynamic alongwind fatigue of slender vertical structure [J]. Engineering Structure, 2001, 23: 1622―1633.
[19]  Repetto M P, Solari G. Dynamic crosswind fatigue of slender vertical structures [J]. Wind and Structures, 2002, 5(6): 527―542.
[20]  Mougin J P, Perrotin P, Mommessin M, et al. Rock fall impact onto reinforced concrete slab: An experimental approach [J]. International Journal of Impact Engineering, 2004, 31: 169―183.
[21]  Repetto M P, Solari G. Directional wind-induced fatigue of slender vertical structure [J]. Journal of Structure Engineering, 2004, 130(7): 1032―1040.
[22]  Delhomme F, Mommessin M, Mougin J-P, Perrotin P. Behavior of a structurally dissipating rock-shed: experimental analysis and study of punching effects [J]. International Journal of Solids and Structures, 2005, 42: 4204―4219.
[23]  Repetto M P, Solari G. Bimodal alongwind fatigue of structures [J]. Journal of Structure Engineering, 2006, 132(6): 899―908.
[24]  王之宏. 桅杆结构的风振疲劳分析[J]. 特种结构, 1994, 11(3): 3―8.
[25]  Delhomme F, Mommessin M, Mougin J P, et al. Simulation of a block impacting a reinforced concrete slab with a finite element model and a mass-spring system [J]. Engineering Structures, 2007, 29(3): 2844―2852.
[26]  Watson K L. Foundation science for engineers [M]. 2nd ed. Basingstoke (Hampshire): Macmillan Press Ltd, 1998.
[27]  Vlassis A G. Progressive collapse assessment of tall buildings [D]. London: Department of Civil and Environmental Engineering, Imperial College, 2007.
[28]  沈聚敏, 王传志, 江见鲸. 钢筋混凝土有限元与板壳极限分析[M]. 北京: 中国建筑工业出版社, 1993: 317―400.
[29]  Wang Zhihong. Analysis of wind-induced fatigue in guyed steel masts [J]. Special Structures, 1994, 11(3): 3―8. (in Chinese)
[30]  屠海明, 邓洪洲. 基于频域的桅杆结构风振疲劳分析[J]. 特种结构, 1999, 15(4): 34―36.
[31]  Shen Jumin, Wang Chuanzhi, Jiang Jianjing. Finite element analysis of RC structures and limited analysis of plates and shells [M]. Beijing: China Architecture & Building Press, 1993: 317―400. (in Chinese)
[32]  ABAQUS. ABAQUS analysis user’s mannual [M]. ABAQUS, Inc.,Version 6.9, USA: 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133