全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2013 

均布载荷作用下简支圆板塑性极限载荷的解析解

DOI: 10.6052/j.issn.1000-4750.2011.10.0707, PP. 53-57

Keywords: 极限载荷,均布荷载,EA屈服准则,解析解,简支圆板

Full-Text   Cite this paper   Add to My Lib

Abstract:

该文建立了受均布载荷作用简支圆板运动许可应变场,并首次以EA(等面积)屈服准则进行了塑性极限分析,获得了极限载荷的解析解。该解为圆板半径a、圆板厚度h以及屈服强度的函数。与Tresca、TSS以及Mises解比较表明,Tresca屈服准则预测极限载荷的下限,TSS屈服准则预测极限载荷的上限,EA和Mises屈服准则预测的极限载荷恰居二者中间,且EA解几乎与Mises解重合。此外,该文还讨论了挠度与相对位置r/a之间的变化关系。

References

[1]  钱七虎. 岩石爆炸动力学的若干进展[J]. 岩石力学与工程学报, 2009, 28(10): 1945―1968.
[2]  Qiang Qihu. Some advances in rock blasting dynamics [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 1945―1968. (in Chinese)
[3]  马荷梅, 张若京. 土中爆炸冲击混凝土路面的数值模拟[J]. 力学季刊, 2005, 26(3): 428―432.
[4]  Ma Hemei, Zhang Ruojing. Numerical simulation of explosion in soil and concrete plate [J]. Chinese Quarterly of Mechanics, 2005, 26(3): 428―432. (in Chinese)
[5]  穆朝民, 任辉启, 辛凯, 施鹏. 变埋深条件下土中爆炸成坑效应[J]. 解放军理工大学学报, 2010, 11(2): 112―116.
[6]  Mu Chaomin, Ren Huiqi, Xin Kai, Shi Peng. Effects of crater formed by explosion in soils [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2010, 11(2): 112―116. (in Chinese)
[7]  Fishman G S, Kiviat P J. The analysis of simulation generated time series [J]. Management Science, 1967, 13(7): 525―557.
[8]  Hemez F M, Doebling S W. Validation of structural dynamics models at Los Alamos National Laboratory [C]. Proceedings of the 41st AIAA /ASME / ASCE /AHS/ASC Structures. Atlanta GA, USA. AIAA-2000-1437, Atlanta: AIAA Press, 2000: 749―760.
[9]  Oden J T, Belytschko T, Babuska I, Hughes T J R. Research direction in computational mechanics [J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192: 913―922.
[10]  Oberkampf W L, Roy C J. Verification and validation in scientific computing [M]. New York: Cambridge University Press, 2010: 1―25.
[11]  王维平. 仿真模型有效性确认与验证[M]. 长沙: 国防科技大学出版社, 1999: 1―12.
[12]  Wang Weiping. Validation and verification of simulation model [M]. Changsha: National Defense Science and Technology University Press, 1999: 1―12. (in Chinese)
[13]  郭勤涛, 张令弥, 费庆国. 结构动力学有限元模型修正的发展 —— 模型确认[J]. 力学进展, 2006, 31(1): 36―42.
[14]  Xu Bingye, Liu Xinsheng. Plastic limit analysis of structure [M]. Beijing: China Architecture and Building Press, 1985: 64―80. (in Chinese)
[15]  Guo Qintao, Zhang Lingmi, Fei Qingguo. From FE model updating to model validation: Advances in modeling of dynamic structures [J]. Advances in Mechanics, 2006, 31(1): 36―42. (in Chinese)
[16]  郭勤涛, 张令弥. 结构动力学有限元模型确认方法研究[J]. 应用力学学报, 2005, 22(4): 572―579.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133