全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2013 

二维联合概率密度函数构造方法及结构并联系统可靠度分析

DOI: 10.6052/j.issn.1000-4750.2011.09.0648, PP. 37-45

Keywords: 联合分布函数,Pearson相关系数,Spearman相关系数,系统失效概率,功能函数

Full-Text   Cite this paper   Add to My Lib

Abstract:

该文目的在于研究二维联合概率密度函数构造方法对结构系统可靠度的影响规律。首先简要介绍了2种构造联合分布函数的近似方法:基于Pearson相关系数的近似方法P和基于Spearman相关系数的近似方法S。提出了基于直接积分方法的并联系统失效概率计算方法。算例结果表明2种近似方法计算的系统失效概率误差取决于系统失效概率的大小、功能函数的形式以及功能函数间相关程度。系统失效概率越小,近似方法计算的系统失效概率误差越大。当系统失效概率小于10?3量级时,近似方法计算的系统失效概率误差较大,工程应用中应该引起足够的重视。功能函数间负相关时近似方法的误差明显大于功能函数间正相关时的误差。此外,系统失效概率误差并不是随着功能函数间相关性的增加而单调增加。

References

[1]  Goda K. Statistical modeling of joint probability distribution using copula: Application to peak and permanent displacement seismic demands [J]. Structural Safety, 2010, 32(2): 112―123.
[2]  Ditlevsen O. Stochastic model for joint wave and wind loads on offshore structures [J]. Structural Safety, 2002, 24(2/3/4): 139―163.
[3]  Li D Q, Chen Y F, Lu W B, Zhou C B. Stochastic response surface method for reliability analysis of rock slopes involving correlated non-normal variables [J]. Computers and Geotechnics, 2011, 38(1): 58―68.
[4]  Phoon K K, Santoso A, Quek S T. Probabilistic analysis of soil-water characteristic curves [J]. Journal of Geotechnical and Geoenvironmental Engineering (ASCE), 2010, 136(3): 445―455.
[5]  Ang A H-S, Tang W H. Probability concepts in engineering: Emphasis on applications to civil and environmental engineering [M]. 2nd edition. New York: John Wiley and Sons, 2007: 138―140.
[6]  Phoon K K, Quek, S T, Huang H W. Simulation of non-Gaussian processes using fractile correlation [J]. Probabilistic Engineering Mechanics, 2004, 19(4): 287―292.
[7]  吴帅兵, 李典庆, 周创兵. 二维联合分布函数构造方法及其对构件可靠度的影响分析 [J]. 工程力学, 2012, 29(7): 69―74.
[8]  Wu Shuaibing, Li Dianqing, Zhou Chuangbing. Bivariate construction methods and its effect on structural component reliability [J]. Engineering Mechanics, 2012, 29(7): 69―74. (in Chinese)
[9]  Melchers R E. Structural reliability analysis and prediction [M]. 2nd edition. Chichester: John Wiley and Sons, 1999: 173―241.
[10]  Li D Q, Zhou C B, Lu W B, Jiang Q H. A system reliability approach for evaluating stability of rock wedges with correlated failure modes [J]. Computers and Geotechnics, 2009, 36(8): 1298―1307.
[11]  Nataf A. Détermination des distributions de probabilités dont les marges sont données [J]. Comptes Rendus de l'Académie des Sciences, 1962, A225: 42―43.
[12]  Der Kiureghian A, Liu P L. Structural reliability under incomplete probability information [J]. Journal of Engineering Mechanics, 1986, 112(1): 85―104.
[13]  Phoon K K. Application of fractile correlations and copulas to non-Gaussian random vectors [C]. Proceedings of the 2nd International Colloqium on Advanced Structural Reliability Analysis Network (ASRANet). International Center for Numerical Methods in Engineering, Barcelona, Spain, 2004 [CDROM].
[14]  Hotelling H, Pabst M R. Rank correlation and tests of significance involving no assumption of normality [J]. The Annals of Mathematical Statistics, 1936, 7(1): 29―43.
[15]  胡毓仁, 李典庆, 陈伯真. 船舶及海洋工程结构疲劳可靠性分析[M]. 哈尔滨: 哈尔滨工程大学出版社, 2010: 155―167.
[16]  Hu Yuren, Li Dianqing, Chen Bozhen. Structural fatigue reliability analysis of ships and offshore engineering [M]. Harbing: Harbin Engineering University Press, 2010: 155―167. (in Chinese)
[17]  Balakrishnan N, Lai C D. Continuous bivariate distributions [M]. 2nd ed. New York: Springer, 2009: 565―566.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133