全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2013 

大锻件微孔隙下的氢压模型及其应力场

DOI: 10.6052/j.issn.1000-4750.2011.11.0782, PP. 345-349

Keywords: 微孔隙,氢压模型,应力场,白点,有限元方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于氢压理论与Griffith理论,通过分析大锻件内微孔隙的来源,建立了大锻件微孔隙在氢压下的有限元分析模型。通过数值模拟,对不同形态下的微孔隙在氢压下的应力场进行了对比分析,结果表明大锻件内原始孔洞萌生白点的可能性极小,但随着孔洞变形量的增大,在垂直于孔洞压下变形主方向的平面上,白点萌生的可能性大大提高。此外,片状裂纹上最大张应力所处的位置表明,氢压下不规则裂纹有向圆形扩展的趋势,这就解释了为何在锻件截面上观察到的白点多为圆形或椭圆形。研究结果为大锻件白点萌生的力学研究奠定了理论基础。

References

[1]  李永华),(檀雯),(张宁). 锻件内部孔洞闭合的研究[J]. (沈阳理工大学学报), 2008,27(6):64―67. Li Yonghua, Tan Wen, Zhang Ning. Research on void closure in the forging [J]. Transactions of Shenyang Ligong University,2008,27(6): 64―67. (in Chinese
[2]  Chiu Yi-Jui, Huang Shyh-Chin. The influence on coupling vibration of a rotor system due to a mistuned blade length International [J]. Journal of Mechanical Sciences, 2007,49:522―532.
[3]  Rayleigh L. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density [C]. Proceedings of the London Mathematical Society, 1883,14:170―177.
[4]  Al-Bedoor B O. Reduced-order nonlinear dynamic model of coupled shaft-torsional and blade-bending vibration rotors [J]. Transactions of the ASME, 2001,123:82―88.
[5]  Taylor G. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes I [C]. Proceedings of the Royal Society of London, 1950,A201:192―196.
[6]  Hansom J C V, Rosen P A, Goldack T J, Oades K, Fieldhouse P, Cowperthwaite N, Youngs D L, Mawhinney N, Baxter A J. Radiation driven planar foil instability and mix experiments at the AWE HELEN laser [J]. Laser and Particle Beams, 1990,8(1):51―71.
[7]  Al-Bedoor1 B O, Al-Qaisia A A. Stability analysis of rotating blade bending vibration due to torsional excitation [J]. Journal of Sound and Vibration, 2005,282:1065―1083.
[8]  马晓秋),(王亲猛),(张锦),(程滔). 带干摩擦阻尼结构叶、盘系统动力学分析[J]. (航空动力学报), 2002,17(1):110―114. Ma Xiaoqiu, Wang Qinmeng, Zhang Jin, Cheng Tao. Dynamic analysis of bladed disc systems with vibration dampers [J]. Journal of Aerospace Power,2002,17(1): 110―114. (in Chinese
[9]  Sharp D H. An overview of Rayleigh-Taylor instability [J]. Physica D, 1984,12:3―18.
[10]  Genta G, Tonoli A. A harmonic finite element for the analysis of flexural, torsional and axialrotordynamic behavior of blade arrays [J]. Journal of Sound and Vibration, 1997,207(5):693―720.
[11]  Young Y N, Tufo H, Dubey A, Rosner R. On the miscible Rayleigh-Taylor instability: two and three dimensions [J]. Journal of Fluid Mechanics, 2001,447:377―408.
[12]  Chun S B, Lee C W. Vibration analysis of shaft-bladed disk system by using substructure synthesis and assumed modes method [J]. Journal of Sound and Vibration, 1996,189(5):587―608.
[13]  Dalziel S B, Linden P F, Youngs D L. Self-similarity and internal structure of turbulence induced by Rayleigh-Taylor instability [J]. Journal of Fluid Mechanics, 1999,399:1―48.
[14]  Wang Ligang, Cao D Q, Huang Wenhu. Nonlinear coupled dynamics of flexible blade-rotor-bearing systems [J]. Tribology International, 2010,43:759―778.
[15]  Youngs D L. Three-dimensional numerical simulation of turbulent mixing by Rayleigh-Taylor instability [J]. Physics of Fluids A, 1991,3(5):1312―1320.
[16]  Cao Dengqing, Wang Ligang, Chen Yushu, Huang Wenhu. Bifurcation and chaos of the bladed overhang rotor system with squeeze film dampers [J]. Technological Sciences, 2009,52:709―720.
[17]  Genta G. On the stability of rotating blade arrays [J].

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133