Cardona A, Geradin M. Time integration of the equations of motion in mechanism analysis [J]. Computers &Structures, 1989,33(3):801―820.
[2]
Yen J, Petzold L, Raha S. A time integration algorithm for flexible mechanism dynamics: The DAE α-method [J]. Computer Methods in Applied Mechanics and Engineering, 1998,158:341―355.
[3]
Arnold M, Brüls O. Convergence of the generalized-αscheme for constrained mechanical systems [J]. Multibody System Dynamics, 2007,6:22―40.
[4]
Chung J, Hulbert G M. A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-αmethod [J]. Journal of Applied Mechanics, 1993,60(2):371―375.
[5]
Brüls O, Cardona A, Arnold M. Lie group generalized-αtime integration of constrained flexible multibody systems [J]. Mechanism and Machine Theory, 2012,48:121―137.
[6]
Negrut D, Rampalli R, Ottarsson G, Sajdak A. On an Implementation of the HHT method in the context of index 3 differential algebraic equations of multibody dynamics [J]. Journal of Computational and Nonlinear Dynamics, 2007,2(1):73―85.
[7]
Jay L O, Negrut D. A second order extension of the generalized-alpha method for constrained systems in mechanics [C]// Bottasso C L, Masarati P, Trainelli L. Multibody Dynamics: Computational Methods and Applications. Berlin: Springer, 2008:143―158.
[8]
Negrut D, Jay L O, Khude N. A discussion of low-order numerical integration formulas for rigid and flexible multibody dynamics [J]. Journal of Computational and Nonlinear Dynamics, 2009,4:1―11.
[9]
姚廷强),(迟毅林),(黄亚宇). 柔性多体系统动力学新型广义-α数值分析方法[J]. (机械工程学报), 2009,45(10):53―60. Yao Tingqiang, Chi Yilin, Huang Yayu. New generalized- αalgorithms for multibody dynamics [J]. Journal of Mechanical Engineering,2009,45(10): 53―60. (in Chinese
Ma Xiuteng, Zhai Yanbo, Luo Shuqiang. Numerical method of multibody dynamics based on θ1 method [J]. Chinese Journal of Theoretical and Applied Mechanics, 2011,43(5):931―938. (in Chinese)