全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2013 

轴向运动超薄梁的非局部动力学分析

DOI: 10.6052/j.issn.1000-4750.2011.11.0797, PP. 367-372

Keywords: 固体力学,非局部理论,超薄梁,轴向运动,固有频率,临界速度

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于非局部弹性理论,建立了两端受初始张力的轴向运动超薄梁横向振动的控制方程。与现有的一些仅仅在控制方程中考虑非局部效应的研究不同,该文同时将非局部效应引入到两种典型的边界条件中,考察了非局部参数对超薄梁横向振动行为尤其是固有频率和临界速度的影响。结果表明:超薄性使得轴向运动梁的自由振动固有频率及临界速度降低,经典弹性理论高估了纳米尺度结构的弯曲刚度,轴向运动超薄梁的动力学行为存在明显的非局部尺寸效应。

References

[1]  Guo Zhongze, Chen Yuze, Den Kewen, Hou Qiang. Study on topology optimization design of constrained damping plate based on Evolutionary structural optimization [J]. Journal of Machine Design, 2006,23(10):3―6. (in Chinese)
[2]  郑玲),(谢熔炉),(王宜),(李以农). 基于优化准则的约束阻尼材料优化配置[J]. (振动与冲击), 2010,29(11):156―159.
[3]  Lim C W, Niu J C, Yu Y M. Nonlocal stress theory for buckling instability of nanotubes: New predictions on stiffness strengthening effects of nanoscales [J]. Journal of Computational and Theoretical Nanoscience, 2010,7(10):2104―2111.
[4]  Li C, Lim C W, Yu J L. Dynamics and stability of transverse vibrations of nonlocal nanobeams with a variable axial load [J]. Smart Materials and Structures, 2011,20(1):015023(7pages).
[5]  Li C, Lim C W, Yu J L, Zeng Q C. Analytical solutions for vibration of simply supported nonlocal nanobeams with an axial force [J]. International Journal of Structural Stability and Dynamics, 2011,11(2):257―271.
[6]  Zheng Ling, Xie Ronglu, Wang Yi, Li Yinong. Optimal placement of constrained damping material in structures based on optimality criteria [J]. Journal of Vibration and Shock, 2010,29(11):156―159. (in Chinese)
[7]  韦勇),(陈国平). 一般阻尼结构的模态阻尼比优化设计[J]. (振动工程学报), 2006,19(4):433―437.
[8]  Ece M C, Aydogdu M. Nonlocal elasticity effect on vibration of in-plane loaded double-walled carbon nano-tubes [J]. Acta Mechanica, 2007,190(1/2/3/4):185―195.
[9]  Yang Deqing. Topological sensitivity method for the optimal placement of unconstrained damping materials under dynamic response constraints [J]. Journal of Shanghai Jiaotong University, 2003,37(8):1109―1212, 1125. (in Chinese)
[10]  郭中泽),(陈裕泽),(邓克文),(侯强). 基于ESO的约束阻尼板拓扑优化设计研究[J]. (机械设计), 2006,23(10):3―6.
[11]  Reddy J N. Nonlocal theories for bending, buckling and vibration of beams [J]. International Journal of Engineering Science, 2007,45(2/3/4/5/6/7/8):288―307.
[12]  Lim C W. Equilibrium and static deflection for bending of a nonlocal nanobeams [J]. Advances in Vibration Engineering, 2009,8(4):277―300.
[13]  Li C, Zheng Z J, Yu J L, Lim C W. Static analysis of ultra-thin beams based on a semi-continuum model [J]. Acta Mechanica Sinica, 2011,27(5):713―719.
[14]  Zhang Y Q, Liu G R, Xie X Y. Free transverse vibration of double-walled carbon nanotubes using a theory of nonlocal elasticity [J]. Physical Review B, 2005,71(19):195404.
[15]  杨德庆),(柳拥军),(金咸定). 薄板减振降噪的拓扑优化设计方法[J]. (船泊力学), 2003,7(5):91―96.
[16]  Zhang Y Q, Liu G R, Wang J S. Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression [J]. Physical Review B, 2004,70(20):205430(6pages).
[17]  Yang Deqing, Liu Yongjun, Jin Xianding. Structural topology optimal design to reduce vibration and noise of thin plate [J]. Journal of Ship Mechanics, 2003,7(5):91―96. (in Chinese)
[18]  Wang Q, Varadan V K. Vibration of carbon nanotubes studied using nonlocal continuum mechanics [J]. Smart Materials and Structures, 2006,15(2):659―666.
[19]  杨德庆). 动响应约束下阻尼材料配置的拓扑敏度法[J]. (上海交通大学学报), 2003,37(8):1109―1212, 1125.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133