全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2013 

考虑材料设计变量的圆形阻尼层合结构的优化设计实验研究

DOI: 10.6052/j.issn.1000-4750.2011.09.0580, PP. 350-354

Keywords: 圆形阻尼层合结构,结构优化,材料设计变量,结构阻尼比,两尺度实验研究

Full-Text   Cite this paper   Add to My Lib

Abstract:

在标准材料制备工艺条件下,可用材料的密度表征材料的微结构构型。基于该思想,以不同的阻尼层材料密度代表不同的阻尼层材料微结构,针对阻尼层的两种优化构型和优化前的构型,从材料和结构两个尺度层面,实验研究了实际工程中的一种圆形阻尼层合结构的阻尼比随阻尼层材料密度与阻尼层构型的变化。测试得到了给定阻尼层构型时,不同激励幅值和负载质量加载下,结构阻尼比随阻尼材料密度的变化曲线,以及给定阻尼层材料密度时,含有三种不同构型阻尼层的结构的阻尼比随载荷激励幅值的变化曲线。两尺度的实验结果表明:适当的材料设计和结构拓扑优化可以提高圆形阻尼层合结构的阻尼特性;同时也表明:满足工程要求的拓扑优化构型存在多个。

References

[1]  杨德庆),(柳拥军),(金咸定). 薄板减振降噪的拓扑优化设计方法[J]. (船泊力学), 2003,7(5):91―96.
[2]  Yang Deqing, Liu Yongjun, Jin Xianding. Structural topology optimal design to reduce vibration and noise of thin plate [J]. Journal of Ship Mechanics, 2003,7(5):91―96. (in Chinese)
[3]  杨德庆). 动响应约束下阻尼材料配置的拓扑敏度法[J]. (上海交通大学学报), 2003,37(8):1109―1212, 1125.
[4]  Yang Deqing. Topological sensitivity method for the optimal placement of unconstrained damping materials under dynamic response constraints [J]. Journal of Shanghai Jiaotong University, 2003,37(8):1109―1212, 1125. (in Chinese)
[5]  郭中泽),(陈裕泽),(邓克文),(侯强). 基于ESO的约束阻尼板拓扑优化设计研究[J]. (机械设计), 2006,23(10):3―6.
[6]  Guo Zhongze, Chen Yuze, Den Kewen, Hou Qiang. Study on topology optimization design of constrained damping plate based on Evolutionary structural optimization [J]. Journal of Machine Design, 2006,23(10):3―6. (in Chinese)
[7]  郑玲),(谢熔炉),(王宜),(李以农). 基于优化准则的约束阻尼材料优化配置[J]. (振动与冲击), 2010,29(11):156―159.
[8]  Zheng Ling, Xie Ronglu, Wang Yi, Li Yinong. Optimal placement of constrained damping material in structures based on optimality criteria [J]. Journal of Vibration and Shock, 2010,29(11):156―159. (in Chinese)
[9]  韦勇),(陈国平). 一般阻尼结构的模态阻尼比优化设计[J]. (振动工程学报), 2006,19(4):433―437.
[10]  Wei Yong, Chen Guoping. Modal damping optimization for general damped structures [J]. Journal of Vibration Engineering, 2006,19(4):433―437. (in Chinese)
[11]  Onck P R, Andrews E W, Gibson L J. Size elects in ductile cellular solids. Part I: modeling [J]. Internatioanl Journal of Mechanical Sciences, 2001,43:681―699.
[12]  Tantikom K, Aizawa T, Mukai T. Symmetric and asymmetric deformation transition in the regularly cell-structured materials Part I: Experimental study [J]. International Journal of Solids and Structures, 2005,42:2199―2210.
[13]  Burgueno R, Quagliatab M J, Mohantyc A K,et al. Hierarchical cellular designs for load-bearing biocomposite beams and plates [J]. Materials Science and Engineering A, 2005,39(1/2):178―187.
[14]  吕奇峰),(张卫红),(张桥),等. 随机振动响应下的组件结构布局优化设计[J]. (航空学报), 2010,31(9):1769―1775.
[15]  LüQifeng, Zhang Weihong, Zhang Qiao,et al. Layout design optimization of component structure with random vibration response [J]. Acta Aeronautica Et Astronautica, 2010,31(9):1769―1775. (in Chinese)
[16]  Xie Y M, Steven G P. Evolutionary structural optimizations [M]. Berlin, Heidelberg, New York:Springer, 1997: 12―29.
[17]  Bendsoe M P, Sigmund O. Topology optimization: Theory methods and applications [M]. Berlin: Springer Verlag, 2003.
[18]  Knight W. Microscopic holes are the secret of wood?s resilience [J]. New Scientists, 2005,8:2520.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133