朱正佑),(李根国),(程昌钧). 具有分数导数本构关系的粘弹性Timoshenko梁的静动力学行为分析[J]. (应用数学和力学), 2002,23(1):1―10. Zhu Zhengyou, Li Genguo, Cheng Changjun. Quasi-static and dynamical analysis for viscoelastic Timoshenko beam with fractional derivative constitutive relation [J]. Applied Mathematics and Mechanics,2002,23(1): 1―10. (in Chinese
[2]
Cardona A, Geradin M. Time integration of the equations of motion in mechanism analysis [J]. Computers &Structures, 1989,33(3):801―820.
[3]
刘林超),(杨骁). 分数导数模型描述的饱和土桩纵向振动分析[J]. (岩土力学), 2011,32(2):526―532. Liu Linchao, Yang Xiao. Analysis of vertical vibrations of a pile in saturated soil described by fractional derivative model [J]. Rock and Soil Mechanics,2011,32(2): 526―532. (in Chinese
[4]
杨骁),(闻敏杰). 饱和分数导数型粘弹性土-深埋圆形隧洞衬砌系统的动力特性[J]. (工程力学), 2012,29(12):248―255. Yang Xiao, Wen Minjie. Dynamic characteristics of saturated fractional derivative type viscoelastic soil and lining system with a deeply embedded circular tunnel [J]. Engineering Mechanics,2012,29(12): 248―255. (in Chinese
[5]
Yen J, Petzold L, Raha S. A time integration algorithm for flexible mechanism dynamics: The DAE α-method [J]. Computer Methods in Applied Mechanics and Engineering, 1998,158:341―355.
[6]
Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous media. I. low frequency range [J]. The Journal of the Acoustical Society of America, 1956,28(2):168―178.
[7]
Arnold M, Brüls O. Convergence of the generalized-αscheme for constrained mechanical systems [J]. Multibody System Dynamics, 2007,6:22―40.
[8]
何利军),(孔令伟),(吴文军),等. 采用分数阶导数描述软黏土蠕变的模型[J]. (岩土力学), 2011,32(增2):239―244. He Lijun, Kong Lingwei, Wu Wenjun, et al. A description of creep model for soft soil with fractional derivative [J]. Rock and Soil Mechanics, 2011, 32(Suppl 2): 239―244. (in Chinese