Massarsch K R. Effects of vibratory compaction [C]. Proceedings of Vibratory Pile Driving and Deep Soil Compaction, Louvain-la-Neuve, Lisse: Swets & Zeitlinger, 2002: 33―42.
[2]
Evgin E. An experimental study and numerical simulation of liquefaction at a soil-structure interface [C]. Proceedings of the 53rd Canadian Geotechnical Conference, Montreal: Canadian Geotechnical Society 2000: 1075―1082.
[3]
Holt R M. Particle vs. laboratory modeling of in situ compaction [J]. Physics and Chemistry of the Earth, Part A, 2001, 26(1/2): 89―93.
[4]
贾敏才. 砂土地基振冲加固的试验研究及颗粒流模拟[D]. 上海: 同济大学, 2003.Jia Mincai. Experimental research of vibroflotation of sands and its numerical simulation by PFC2D [D]. Shanghai: Tongji University, 2003. (in Chinese).
[5]
Fuglsang L D,Ovesen N K. The application of the theory of the theory of modelling to centrifuge studies [C]. Rotterdam: A. A. Balkema, 1988: 119―138.
[6]
Gui M W,Bolton M D. Geometry and scale effects in CPT and pile design [C]. Proceedings of the 1st International Conference on Site Characterization, Atlanta, Rotterdam: A. A. Balkema, 1998: 63―71.
[7]
Te Kamp L,Konietzky H,Guerin F. Modeling of the Chagan underground nuclear test with the distinct element method [J]. International Journal of Blasting and Fragmentation, 1998, 1(1): 295―312.
[8]
EI Shamy U,Zeghal M. A micro-mechanical investigation of the dynamic response and liquefaction of saturated granular soils [J]. Soil Dynamics and Earthquake Engineering, 2007, 27(8): 712―729.
[9]
Slocomebe B C,Bell A L,Baez J I. The densification of granular soils using vibro methods [J]. Geotechnique, 2000, 50(6): 715―725.
[10]
李飒,孙兴松,要明伦. 混黏土的粉土、粉砂室内试验液化判别标准的研究[J]. (岩土力学), 2006, 27(3): 360―364.Li Sa,Sun Xingsong,Yao Minglun. Study of liquefaction evaluation used in indoor test of silt, silt sand mixed clay [J]. Rock and Soil Mechanics, 2006, 27(3): 360―364. (in Chinese)
[11]
Ghassemi A,Pak A,Shahir H. Numerical study of the coupled hydro-mechanical effects in dynamic compaction of saturated granular soils [J]. Computers and Geotechnics, 2010, 37(1): 10―24.
[12]
Rodger A A,Littlejohn G S. A study of vibratory driving in granular soils [J]. Geotechnique, 1980, 30(3): 269―293.
[13]
Massarch K R. Static and dynamic soil displacements caused be pile driving [C]. Proceedings of the 4th International Conference on the Application of Stress-Wave Theory to Piles, Netherlands, Rotterdam: A. A. Balkema, 1992: 15―25.
[14]
El Shamy U,Denissen C. Microscale characterization of energy dissipation mechanisms in liquefiable granular soils [J]. Computers and Geotechnics, 2010, 37(7): 846―857.
[15]
曹琪君. 饱和砂性土地基深层竖向高频振动致密机理的颗粒离散元模拟[D]. 福州: 福州大学, 2010.Cao Qijun. Discrete element modeling of mechanisms of saturated sandy soils due to deep vertical high frequency vibratory compaction [D]. Fuzhou: Fuzhou University, 2010. (in Chinese)