全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2013 

深厚砂土地基共振致密机理

DOI: 10.6052/j.issn.1000-4750.2012.02.0123, PP. 105-112

Keywords: 颗粒离散元,共振致密,粉砂土,颗粒级配,地基处理

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用颗粒离散元对深厚砂性土地基进行共振致密模拟与机理分析,详细地研究了高频共振致密过程中,土体内部孔隙率、位移、孔隙水压力的变化情况,以及振动杆杆端及杆周土体的力学特性;对振动频率、振幅及颗粒级配对共振致密效果的影响进行了分析。结果表明:高频共振致密能很好地用于处理深厚粉砂土地基,振动结束后,土体的孔隙率明显减小,表层位移明显,振动杆杆端及杆周的土体力学特性也发生较大变化;共振致密的效果受振动杆振幅、频率及土体级配状况等因素的影响,振幅和频率过大或过小都无法获得最佳致密效果。在实际工程中,应根据土体的特性确定最佳的振幅和频率。

References

[1]  Massarsch K R. Effects of vibratory compaction [C]. Proceedings of Vibratory Pile Driving and Deep Soil Compaction, Louvain-la-Neuve, Lisse: Swets & Zeitlinger, 2002: 33―42.
[2]  Evgin E. An experimental study and numerical simulation of liquefaction at a soil-structure interface [C]. Proceedings of the 53rd Canadian Geotechnical Conference, Montreal: Canadian Geotechnical Society 2000: 1075―1082.
[3]  Holt R M. Particle vs. laboratory modeling of in situ compaction [J]. Physics and Chemistry of the Earth, Part A, 2001, 26(1/2): 89―93.
[4]  贾敏才. 砂土地基振冲加固的试验研究及颗粒流模拟[D]. 上海: 同济大学, 2003.Jia Mincai. Experimental research of vibroflotation of sands and its numerical simulation by PFC2D [D]. Shanghai: Tongji University, 2003. (in Chinese).
[5]  Fuglsang L D,Ovesen N K. The application of the theory of the theory of modelling to centrifuge studies [C]. Rotterdam: A. A. Balkema, 1988: 119―138.
[6]  Gui M W,Bolton M D. Geometry and scale effects in CPT and pile design [C]. Proceedings of the 1st International Conference on Site Characterization, Atlanta, Rotterdam: A. A. Balkema, 1998: 63―71.
[7]  Te Kamp L,Konietzky H,Guerin F. Modeling of the Chagan underground nuclear test with the distinct element method [J]. International Journal of Blasting and Fragmentation, 1998, 1(1): 295―312.
[8]  EI Shamy U,Zeghal M. A micro-mechanical investigation of the dynamic response and liquefaction of saturated granular soils [J]. Soil Dynamics and Earthquake Engineering, 2007, 27(8): 712―729.
[9]  Slocomebe B C,Bell A L,Baez J I. The densification of granular soils using vibro methods [J]. Geotechnique, 2000, 50(6): 715―725.
[10]  李飒,孙兴松,要明伦. 混黏土的粉土、粉砂室内试验液化判别标准的研究[J]. (岩土力学), 2006, 27(3): 360―364.Li Sa,Sun Xingsong,Yao Minglun. Study of liquefaction evaluation used in indoor test of silt, silt sand mixed clay [J]. Rock and Soil Mechanics, 2006, 27(3): 360―364. (in Chinese)
[11]  Ghassemi A,Pak A,Shahir H. Numerical study of the coupled hydro-mechanical effects in dynamic compaction of saturated granular soils [J]. Computers and Geotechnics, 2010, 37(1): 10―24.
[12]  Rodger A A,Littlejohn G S. A study of vibratory driving in granular soils [J]. Geotechnique, 1980, 30(3): 269―293.
[13]  Massarch K R. Static and dynamic soil displacements caused be pile driving [C]. Proceedings of the 4th International Conference on the Application of Stress-Wave Theory to Piles, Netherlands, Rotterdam: A. A. Balkema, 1992: 15―25.
[14]  El Shamy U,Denissen C. Microscale characterization of energy dissipation mechanisms in liquefiable granular soils [J]. Computers and Geotechnics, 2010, 37(7): 846―857.
[15]  曹琪君. 饱和砂性土地基深层竖向高频振动致密机理的颗粒离散元模拟[D]. 福州: 福州大学, 2010.Cao Qijun. Discrete element modeling of mechanisms of saturated sandy soils due to deep vertical high frequency vibratory compaction [D]. Fuzhou: Fuzhou University, 2010. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133