朱耀, 庞宝君, 盖秉政. 一种用于动态拉伸试验装置的新型试件装卡方式[J]. 实验力学, 2009, 24(5): 433―438. Zhu Yao, Pang Baojun, Gai Bingzheng. A new specimen fastener for dynamic tensile testing apparatus [J]. Journal of Experimental Mechanics, 2009, 24(5): 433―438. (in Chinese)
[2]
宋顺成, 田时雨. Hopkinson冲击拉杆的改进和应用[J]. 爆炸与冲击, 1992, 12(1): 62―67. Song Shuncheng, Tian Shiyu. Dynamic tensile testing of materials using the hollow Hopkinson bars instead of the solid Hopkinson bars [J]. Explosion and Shock Waves, 1992, 12(1): 62―67. (in Chinese)
[3]
徐伟芳. 冲击拉伸试验技术及其在镁铝合金上的应用[D]. 四川, 绵阳: 中国工程物理研究院, 2002. Xu Weifang. Impact tensile experimental technique and its application on Magnesuim-Alminium alloy [D]. Mianyang, Sichuan: China Academy of Engineering Physics, 2002. (in Chinese)
[4]
Nicholas T. Tensile testing of materials at high rates of strain [J]. Journal of Experimental Mechanics, 1981, 21(5): 177―185.
[5]
王瑞峰, 卢芳云, 林玉亮, 等. 动态拉伸实验数据处理方法的改进及应用[J]. 国防科技大学学报, 2007, 29(3): 31―34. Wang Ruifeng, Lu Fangyun, Lin Yuliang, et al. Improvement of and application data processing for dynamic tensile experiment [J]. Journal of National University of Defense Technology, 2007, 29(3): 31―34. (in Chinese)
[6]
Albertini C, Montagnani M. Dynamic material properties of several steels for fast breeder reactor safety analysis [R] Report EUR 5787 EN. Ispra, Italy: Applied Mechanics Division, Joint Research Centre, 1977.
[7]
Pothnis J R, Perla Y, Arya H, et al. High strain rate tensile behavior of Aluminum alloy 7075 T651 and IS 2062 mild steel [J]. Journal of Engineering Materials and Technology, 2011, 133(2): 021026-1―021026-9.
[8]
Othman R, Guegan P, Challita C, et al. A modified servo-hydraulic machine for testing at intermediate strain rates [J]. International Journal of Impact Engineering, 2009, 36(3): 460―467.
[9]
Verleysen P, Peirs J, Van S J, et al. Effect of strain rate on the forming behaviour of sheet metals [J]. Journal of Materials Processing Technology, 2011, 211(8): 1457―1464.
[10]
朱耀. AA7055铝合金在不同温度及应变率下力学性能的实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2010. Zhu Yao. Experimental research on mechanical properties of AA7055 aluminum alloys at different temperatures and strain rates [D]. Harbin: Harbin Institute of Technology, 2010. (in Chinese)
[11]
李运良, 门朝举, 谭叔舜, 等. 摆锤式间接杆-杆型SHTB装置的研制及FEM仿真分析[J]. 工程力学, 2011, 28(5): 245―250. Li Yunliang, Men Chaoju, Tan Shushun, et al. Development and simulation analysis by FEM of the pendulum impact tensile apparatus of bar-bar [J]. Engineering Mechanics, 2011, 28(5): 245―250. (in Chinese)
[12]
胡时胜, 邓德涛, 任小彬. 材料冲击拉伸实验的若干问题探讨[J]. 实验力学, 1998, 13(1): 9―14. Hu Shisheng, Deng Detao, Ren Xiaobin. A study on impact tensile test of materials [J]. Journal of Experimental Mechanics, 1998, 13(1): 9―14. (in Chinese)
[13]
Song B, Antoun B R. Pseudo stress response in Kolsky tension bar experiments [J]. Journal of Experimental Mechanics, 2012, 52(5): 525―528.
[14]
Kolsky H. An investigation of mechanical properties of materials at very high rates of loading [J]. Proceedings of the Physical Society, 1949, B62: 676―700.
[15]
Chen Y, Clausen A H, Hopperstad O S, et al. Application of a split-Hopkinson tension bar in a mutual assessment of experimental tests and numerical predictions [J]International Journal of Impact Engineering, 2011, 38(10): 824―836.
[16]
宋力, 胡时胜. SHPB测试中的均匀性问题及恒应变率[J]. 爆炸与冲击, 2005, 25(3): 207―216. Song Li, Hu Shisheng. Stress uniformity and constant strain rate in SHPB test [J]. Explosion and Shock Waves, 2005, 25(3): 207―216. (in Chinese)
[17]
宋力, 胡时胜. SHPB数据处理中的二波法与三波法[J]. 爆炸与冲击, 2005, 25(4): 368―373. Song Li, Hu Shisheng. Two-wave and three-wave method in SHPB data processing [J]. Explosion and Shock Waves, 2005, 25(4): 368―373. (in Chinese)
[18]
陈大年, 王焕然, 陈建平, 等. 高加载率SHPB试验分析原理的再研究[J]. 工程力学, 2005, 22(1): 82―87. Chen Danian, Wang Huanran, Chen Jianping, et al. Re-examination of spilt Hopkinson pressure bar analyses at high loading rate [J]. Engineering Mechanics, 2005, 22(1): 82―87. (in Chinese)
[19]
Callister W D. Fundamentals of materials science and engineering [M]. New York: John Wiley & Sons, Incorporation, 2001: 167―169.
[20]
王铸钢. 材料动态强度的试验研究、数值模拟与机理探讨[D]. 北京: 清华大学, 2010. Wang Zhugang. Experimental investigation, numerical simulation and mechanism exploration of material dynamic strength [D]. Beijing: Tsinghua University, 2010. (in Chinese)
[21]
Xu Weifang, Huang Xicheng, Hao Zhiming, et al. Effect of the geometric shapes of specimens on impact tensile tests [J]. Journal of Zhejiang University Science A, 2010, 11(10): 817―821.
[22]
张宝平, 郑玉六, 洪兵, 等. 应变率在3G10-3s-1范围内LC4CS铝合金的动力学性态[J]. 北京理工大学学报, 1993, 13(4): 461―468. Zhang Baoping, Zheng Yuliu, Hong Bing, et al. Dynamic behavior of LC4CS Aluminum-alloy at strain rate up to 3G10-3s-1 [J]. Journal of Beijing Institute of Technology, 1993, 13(4): 461―468. (in Chinese)
[23]
苗应刚, 邓琼, 索涛, 等. LC9铝合金的动态力学性能及温度相关性研究[J]. 兵工学报, 2009, 30(增刊2): 90―93.Miao Yinggang, Deng Qiong, Suo Tao, et al. Research on mechanical properties and their temperature dependencies of LC9 alloys under dynamic load [J]. Introducing Journal of China Ordnance, 2009, 30(Suppl 2): 90―93. (in Chinese)
[24]
肖大武, 李英雷, 胡时胜. LY12铝小尺寸试样的SHPB实验探讨[J]. 实验力学, 2009, 24(1): 81―85. Xiao Dawu, Li Yinglei, Hu Shisheng. Experimental study of LY12 Al small dimension specimen based on SHPB test [J]. Journal of Experimental Mechanics, 2009, 24(1): 81―85. (in Chinese)