全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2013 

基于蜂窝材料结构相似有限元模型的夹层结构抗爆炸冲击特性优化设计分析

DOI: 10.6052/j.issn.1000-4750.2012.03.0148, PP. 248-254

Keywords: 有限元分析,蜂窝材料夹层结构,结构相似有限元模型,抗爆炸冲击特性,优化设计

Full-Text   Cite this paper   Add to My Lib

Abstract:

根据蜂窝材料压缩力学理论,提出了一种蜂窝材料的结构相似有限元模型构建方法,并在蜂窝材料轴向压缩和夹层结构抗爆炸冲击2种分析工况下对结构相似模型计算分析的等效性进行了验证。结果表明,蜂窝材料的结构相似有限元模型不仅能够描述原蜂窝材料的宏观压缩力学特性,而且可以大幅地提高模型计算效率,为蜂窝材料夹层结构的抗爆炸冲击特性分析与设计优化提供条件。基于该结构相似有限元模型,以最小化蜂窝材料夹层结构的面密度为设计目标,利用自适应响应面方法对夹层结构的主要设计参数进行了优化,在结构的爆炸冲击响应速度峰值不增大的条件下提高了结构的轻量化水平。

References

[1]  Karagiozova D, Nurick G, Langdon G. Behavior of sandwich panels subject to intense air blasts —— Part 2: Numerical simulation [J]. Composite Structures, 2009, 91: 442―450.
[2]  Zhu F, Zhao L, Lu G,et al. A numerical simulation of the blast impact of square metallic sandwich panels [J]. International Journal of Impact Engineering, 2009, 36: 687―699.
[3]  Zhu F, Zhao L, Lu G,et al. Deformation and failure of blast-loaded metallic sandwich panels—— experimental investigations [J]. International Journal of Impact Engineering, 2008, 35: 937―951.
[4]  Dharmasena K, Wadley H, Xue Z,et al. Mechanical response of metallic honeycomb sandwich panel structures to high-intensity dynamic loading [J]. International Journal of Impact Engineering, 2008, 35: 1063―1074.
[5]  Xue Z, Hutchinson J. A comparative study of impulse- resistant metal sandwich plates [J]. International Journal of Impact Engineering, 2004, 30: 1283―1305.
[6]  Lee D, O’Toole B. Energy absorbing sandwich structures under blast loading [C]. Detroit: 8th International LS-DYNA Users Conference O’Toole B. Energy absorbing sandwich structures under blast loading [C]. Detroit: 8th International LS-DYNA Users Conference, 2004, 8: 13―24.
[7]  Gibson L J,Ashby M F. 多孔固体结构与性能[M]. 第2版. 刘培生, 译. 北京: 清华大学出版社, 2003: 128―148Gibson L J,Ashby M F. Cellular solids: Structure and properties [M]. 2nd ed. Translated by Liu Peisheng. Beijing: Tsinghua University Press, 2003: 128―148(in Chinese)
[8]  Wierzbicki T. Crushing analysis of metal honeycombs [J]. International Journal of Impact Engineering, 1983, 1(2): 157―174.
[9]  Randers-Pehrson G, Bannister K. Airblast loading model for DYNA2D and DYNA3D [R]. Maryland: US Army Research Laboratory, 1997.
[10]  Onck P R, Andrews E W, Gibson L J. Size effects in ductile cellular solids. Part I: Modeling [J]. International Journal of Mechanical Sciences, 2001, 43: 681―699.
[11]  Wang G, Dong Z, Aitchison P. Adaptive response surface method——A global optimization scheme for computation- intensive design problems [J]. Engineering Optimization, 2001, 33(6): 707―734.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133