全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2013 

非平稳随机激励下结构动力可靠度时域显式子集模拟法

DOI: 10.6052/j.issn.1000-4750.2012.03.0210

Keywords: 动力可靠度,时域显式表达,子集模拟法,Metropolis-Hastings算法,非平稳

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于动力响应显式表达式,时域显式随机模拟法可以通过减少单次样本计算时间有效提高动力可靠度的计算效率。然而,对于小失效概率问题,由于需要大量次样本计算,该法的计算量仍相当可观。为了克服上述困难,在时域显式随机模拟法基础上引入子集模拟法的基本思想,把小失效概率表示为一系列较大的条件概率的乘积,其中各条件概率采用时域显式随机模拟法计算,条件域内的样本采用Metropolis-Hastings抽样方法生成,从而实现了减少随机模拟所需的样本数,进一步提高了计算效率。算例结果表明改进的方法具有更高的计算效率,更适用于小失效概率和多自由度结构的动力可靠度问题。

References

[1]  Au S K,Beck J L. Estimation of small failure probabilities in high dimensions by subset simulation [J]. Probabilistic Engineering Mechanics, 2001, 16(4): 263―277.
[2]  Ching J,Beck J L,Au S K. Hybrid subset simulation method for reliability estimation of dynamical systems subject to stochastic excitation [J]. Probabilistic Engineering Mechanics, 2005, 20(3): 199―214.
[3]  Au S K,Ching J,Beck J L. Application of subset simulation methods to reliability benchmark problems [J]. Structural Safety, 2007, 29(3): 183―193.
[4]  茆诗松,王静龙,濮晓龙. 高等数理统计[M]. 北京: 高等教育出版社, 1998: 450―454Mao Shisong,Wang Jinglong,Pu Xiaolong. Advanced mathematical statistics [M]. Beijing: Higher Education Press, 1998: 450―454(in Chinese)
[5]  张建仁,刘扬,许福友,等. 结构可靠度理论及其在桥梁工程中的应用[M]. 北京: 人民交通出版社, 2003: 56―60Zhang Jianren,Liu Yang,Xu Fuyou,et al. Theory of structure reliability and its application in bridge engineering [M]. Beijing: China Communications Press, 2003: 56―60(in Chinese)
[6]  Shinozuka M. Monte Carlo solution of structural dynamics [J]. International Computers and Structures, 1972, 2(5): 855―874.
[7]  苏成,徐瑞. 非平稳随机激励下结构体系动力可靠度时域解法[J]. (力学学报), 2010, 42(3): 512―520.Su Cheng,Xu Rui. Time-domain method for dynamic reliability of structural systems subjected to non-stationary random excitations [J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(3): 512―520. (in Chinese)
[8]  苏成,徐瑞. 非平稳随机激励下结构随机振动时域分析法[J]. (工程力学), 2010, 27(12): 77―83.Su Cheng,Xu Rui. Random vibration analysis of structures subjected to non-stationary excitations by time domain method [J]. Engineering Mechanics, 2010, 27(12): 77―83. (in Chinese)
[9]  Au S K,Beck J L. First excursion probabilities for linear systems by very efficient importance sampling [J]. Probabilistic Engineering Mechanics, 2001, 16(3): 193―207.
[10]  吴建成,吴剑国,吴亚舸. 一种基于马尔可夫链模拟样本的自适应重要样本法[J]. (华东船舶工业学院学报), 2003, 17(3): 8―12.Wu Jiancheng,Wu Jianguo,Wu Yage. An adaptive important sampling method based on Markov Chain sample simulation algorithm [J]. Journal of East China Shipbuilding Institute, 2003, 17(3): 8―12. (in Chinese)
[11]  刘佩,姚谦峰. 采用重要抽样法的结构动力可靠度计算[J]. (计算力学学报), 2009, 26(6): 851―855.Liu Pei,Yao Qianfeng. Dynamic reliability calculation based on importance sampling method [J]. Chinese Journal of Computational Mechanics, 2009, 26(6): 851―855. (in Chinese)
[12]  徐瑞. 大型复杂结构非平稳随机振动分析方法研究[D]. 广州: 华南理工大学, 2010.Xu Rui. A study on non-stationary random vibration analysis for large and complex structures [D]. Guangzhou: South China University of Technique, 2010. (in Chinese)
[13]  Kanai K. Semi-empirical formula for the seismic characteristics of the ground motion [J]. Bulletin of the Earthquake Research Institute, University of Tokyo, 1957, 35(2): 308―325.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133