姜建山,唐德东,周建庭. 桥梁索力测量方法和发展趋势[J]. (重庆交通大学学报(自然科学版)), 2008, 27(3): 380―382.Jiang Jianshan,Tang Dedong,Zhou Jianting. Progress and developing trend of cable stress measuring metbods of bridge [J]. Journal of Chongqing Jiaotong University (Natural SCience), 2008, 27(3): 380―382. (in Chinese)
[2]
乔陶鹏,严普强,邓焱. 斜拉索索力估算中振动信号处理方法的改进[J]. (清华大学学报(自然科学版)), 2003, 43(5): 644―647.Qiao Taopeng,Yan Puqiang,Deng Yan. Data process sing of vibration signals for cable tension estimation [J]. Journal of Tsinghua University (Natural Science Edition), 2003, 43(5): 644―647. (in Chinese)
[3]
Hiroshi Zui. Practical formulas for estimation of cable tension by vibration method [J]. Journal of Structural Engineering, 1996, 122(6): 651―657.
[4]
郑宪政,郝超. 用振动法估算拉索张力的实用公式[J].国外桥梁, 1997(3): 27―32.Zheng Xianzheng,Hao Chao. Practical formulas to calculate the cable tension based on vibration method [J]. Foreign Bridge, 1997(3): 27―32. (in Chinese)
[5]
任伟新,陈刚. 由基频计算斜拉索索力的实用公式[J]. (土木工程学报), 2005, 38(11): 26―31.Ren Weixin,Chen Gang. Practical formulas to determine cable tension by using cable fundamental frequency [J]. China Civil Engineering Journal, 2005, 38(11): 26―31. (in Chinese)
[6]
孟少平,杨睿,王景全. 一类精确考虑抗弯刚度影的系杆拱桥索力测量新公式[J]. (公路交通科技), 2008, 25(6): 87―91.Meng Shaoping,Yang Rui,Wang Jingquan. Novel formula of tension measurement for tied arch bridges in precise consideration of flexural rigidity [J]. Journal of Highway and Transportation Research and Development, 2008, 25(6): 87―91. (in Chinese)
[7]
李新生,项贻强. 基于挠度曲线振型函数的系杆拱桥柔性吊杆索力测量公式[J]. (工程力学), 2010, 27(8): 174―178.Li Xinsheng,Xiang Yiqiang. Tension measurement formula of flexible hanger rods in tied-rods arch bridges based on vibration shape function of deflection curve [J]. Engineering Mechanics, 2010, 27(8): 174―178. (in Chinese)
[8]
冯东明,李爱群,李枝军,袁辉辉. 基于频率法的自锚式悬索桥吊索力测试与分析[J]. (东南大学学报(自然科学版)), 2009, 39(增刊Ⅱ): 106―110.Feng Dongming,Li Aiqun,Li Zhijun,Yuan Huihui. Tension measurement and analysis of hangers for self-anchored suspension bridge based on frequency method [J]. Journal of Southeast University (Natural Science Edition), 2009, 39(Suppl Ⅱ): 106―110. (in Chinese)
[9]
Irivine H M,Caughey T K. The linear theory of vibration of a suspended cable [J]. Proceedings of the Royal Society. London, England, 1974, 341(A): 299―315.
[10]
Clough R W,Penzien J. Dynamics of structures [M]. , New York: McGraw-Hill, 1993: 195―198.
[11]
李传习,夏桂云. 大跨度桥梁结构计算理论[M]. 北京: 人民交通出版社, 2002: 105―113Li Chuanxi,Xia Guiyun. Long span bridge structure computation theory [M]. Beijing: China Communications Press, 2002: 105―113(in Chinese)
[12]
项海帆. 高等桥梁理论[M]. 北京: 人民交通出版社, 2001: 224―227Xiang Haifan. Advanced bridge theory [M]. Beijing: China Communications Press, 2001: 224―227(in Chinese)
[13]
孙永明,孙航,任远. 频率法计算匀质竖直拉索索力计算公式[J]. (工程力学), 2013, 30(4): 211―218.Sun Yongming,Sun Hang,Ren Yuan. Practical formaulas to calculate tensions of vertical cable with uniform properties by frequency method [J]. Engineering Mechanics, 2013, 30(4): 211―218. (in Chinese)