全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2013 

端部性质对频率法测量竖直拉索索力影响分析

DOI: 10.6052/j.issn.1000-4750.2012.03.0187, PP. 10-17

Keywords: 桥梁工程,索力测量,有限元分析,竖直拉索,频率法,端部性质

Full-Text   Cite this paper   Add to My Lib

Abstract:

对频率法计算竖直拉索索力的原理和方法进行分析与评价,指出工程实际拉索与理想匀质拉索模型的区别,强调端部性质对频率法测量竖直拉索索力的影响。根据实际拉索两端一般具有锚杯和连接筒的构造特点,提出“三段式、两端刚接”振动模型;延用匀质拉索索力计算公式模型,考虑对匀质比例变量进行修正从而获得实际比例变量;采用有限单元法对端部性质进行参数影响分析,深入研究了比例变量修正系数随长度修正系数和刚度修正系数的变化规律。比例变量修正系数与长度修正系数成正比例函数关系,其函数方程斜率为刚度修正系数;根据刚度修正系数随刚度比PI增大而增大,随索力T增大而减小等变化规律,构造刚度修正系数函数方程;并最终建立可计入端部性质影响的修正索力计算公式。数值分析和工程实例计算结果均表明:当长度比PL≥0.08时,端部性质对计算索力的影响随索长的减小而迅速增大;当长度比PL≥0.14时,匀质索力计算公式已经不能正确计算索力,其计算偏差可达50%以上;而本文建立的修正索力计算公式始终能够对长度比PL≤0.5拉索做出正确的计算索力,其计算精度能够满足工程要求。

References

[1]  姜建山,唐德东,周建庭. 桥梁索力测量方法和发展趋势[J]. (重庆交通大学学报(自然科学版)), 2008, 27(3): 380―382.Jiang Jianshan,Tang Dedong,Zhou Jianting. Progress and developing trend of cable stress measuring metbods of bridge [J]. Journal of Chongqing Jiaotong University (Natural SCience), 2008, 27(3): 380―382. (in Chinese)
[2]  乔陶鹏,严普强,邓焱. 斜拉索索力估算中振动信号处理方法的改进[J]. (清华大学学报(自然科学版)), 2003, 43(5): 644―647.Qiao Taopeng,Yan Puqiang,Deng Yan. Data process sing of vibration signals for cable tension estimation [J]. Journal of Tsinghua University (Natural Science Edition), 2003, 43(5): 644―647. (in Chinese)
[3]  Hiroshi Zui. Practical formulas for estimation of cable tension by vibration method [J]. Journal of Structural Engineering, 1996, 122(6): 651―657.
[4]  郑宪政,郝超. 用振动法估算拉索张力的实用公式[J].国外桥梁, 1997(3): 27―32.Zheng Xianzheng,Hao Chao. Practical formulas to calculate the cable tension based on vibration method [J]. Foreign Bridge, 1997(3): 27―32. (in Chinese)
[5]  任伟新,陈刚. 由基频计算斜拉索索力的实用公式[J]. (土木工程学报), 2005, 38(11): 26―31.Ren Weixin,Chen Gang. Practical formulas to determine cable tension by using cable fundamental frequency [J]. China Civil Engineering Journal, 2005, 38(11): 26―31. (in Chinese)
[6]  孟少平,杨睿,王景全. 一类精确考虑抗弯刚度影的系杆拱桥索力测量新公式[J]. (公路交通科技), 2008, 25(6): 87―91.Meng Shaoping,Yang Rui,Wang Jingquan. Novel formula of tension measurement for tied arch bridges in precise consideration of flexural rigidity [J]. Journal of Highway and Transportation Research and Development, 2008, 25(6): 87―91. (in Chinese)
[7]  李新生,项贻强. 基于挠度曲线振型函数的系杆拱桥柔性吊杆索力测量公式[J]. (工程力学), 2010, 27(8): 174―178.Li Xinsheng,Xiang Yiqiang. Tension measurement formula of flexible hanger rods in tied-rods arch bridges based on vibration shape function of deflection curve [J]. Engineering Mechanics, 2010, 27(8): 174―178. (in Chinese)
[8]  冯东明,李爱群,李枝军,袁辉辉. 基于频率法的自锚式悬索桥吊索力测试与分析[J]. (东南大学学报(自然科学版)), 2009, 39(增刊Ⅱ): 106―110.Feng Dongming,Li Aiqun,Li Zhijun,Yuan Huihui. Tension measurement and analysis of hangers for self-anchored suspension bridge based on frequency method [J]. Journal of Southeast University (Natural Science Edition), 2009, 39(Suppl Ⅱ): 106―110. (in Chinese)
[9]  Irivine H M,Caughey T K. The linear theory of vibration of a suspended cable [J]. Proceedings of the Royal Society. London, England, 1974, 341(A): 299―315.
[10]  Clough R W,Penzien J. Dynamics of structures [M]. , New York: McGraw-Hill, 1993: 195―198.
[11]  李传习,夏桂云. 大跨度桥梁结构计算理论[M]. 北京: 人民交通出版社, 2002: 105―113Li Chuanxi,Xia Guiyun. Long span bridge structure computation theory [M]. Beijing: China Communications Press, 2002: 105―113(in Chinese)
[12]  项海帆. 高等桥梁理论[M]. 北京: 人民交通出版社, 2001: 224―227Xiang Haifan. Advanced bridge theory [M]. Beijing: China Communications Press, 2001: 224―227(in Chinese)
[13]  孙永明,孙航,任远. 频率法计算匀质竖直拉索索力计算公式[J]. (工程力学), 2013, 30(4): 211―218.Sun Yongming,Sun Hang,Ren Yuan. Practical formaulas to calculate tensions of vertical cable with uniform properties by frequency method [J]. Engineering Mechanics, 2013, 30(4): 211―218. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133