全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2013 

加载历史和裂纹闭合对疲劳裂纹扩展行为影响的数值模拟

DOI: 10.6052/j.issn.1000-4750.2012.04.0272, PP. 244-250

Keywords: 裂纹闭合,加载历史,应力比,疲劳损伤,疲劳裂纹扩展速率

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用不同应力比条件下的16MnR钢紧凑拉伸试样,设计了三种有限元分析模型,即不考虑加载历史效应的静态裂纹扩展模型,同时考虑加载历史和裂纹闭合的动态裂纹扩展模型以及仅考虑加载历史的伪动态裂纹扩展模型,对疲劳裂纹闭合过程、裂纹尖端的应力-应变迟滞环、疲劳损伤和裂纹扩展速率进行了数值模拟与分析,进而着重探讨了加载历史和裂纹闭合影响疲劳裂纹扩展行为的交互作用机制。结果表明:对于同类分析模型,应力比越大越不容易产生裂纹闭合;而在应力比相同的情况下,加载历史引起的残余压应力对裂纹闭合有明显的促进作用。裂纹闭合效应阻碍了平均应力的松弛,减小了裂纹尖端附近的应力-应变场强度、疲劳损伤和裂纹扩展速率,而加载历史引起的残余压应力则加快了平均应力的松弛和抑制了棘轮效应。与实验结果比较发现,只有同时考虑了裂纹闭合效应和加载历史影响的动态裂纹扩展模型,才能对疲劳裂纹扩展行为进行准确、定量的模拟。

References

[1]  Elber W. The significance of fatigue crack closure [M]. Damage Tolerance in Aircraft Structures, ASTM STP 486 1971: 230―242.
[2]  Sehitoglu H,Gall K,García A. Recent advances in fatigue crack growth modeling [J]. García A. Recent advances in fatigue crack growth modeling [J]. International Journal of Fracture, 1996, 80(2): 165―192.
[3]  McClung R C,Sehitoglu H. On the finite element analysis of fatigue crack closure-1. Basic modelling issues [J]. Engineering Fracture Mechanics, 1989, 33: 237―252.
[4]  赵丹,冯淼林,吴长春. 单元类型和尺寸对裂尖疲劳塑性数值模拟的影响研究[J]. (力学季刊), 2008, 29(3): 349―355.Zhao Dan,Feng Miaolin,Wu Changchun. Influence of element type and size on finite element prediction of crack tip plasticity [J]. Chinese Quarterly of Mechanics, 2008, 29(3): 349―355. (in Chinese)
[5]  Jiang Y,Feng M L,Ding F. A reexamination of plasticity-induced crack closure in fatigue crack propagation [J]. International Journal of Plasticity, 2005, 21(9): 1720―1740.
[6]  Lee S Y,Liaw P K,Choo H,Rogge R B. A study on fatigue crack growth behavior subjected to a single tensile overload Part I. An overload-induced transient crack growth micromechanism [J]. Acta Materialia, 2011, 59: 485―494.
[7]  Lee S Y,Choo H,Liaw P K,An K,Hubbard C R. A study on fatigue crack growth behavior subjected to a single tensile overload Part II. Transfer of stress concentration and its role in overload-induced transient crack growth [J]. Acta Materialia, 2011, 59: 495―502.
[8]  Wang X G,Gao Z L,Zhao T W,Jiang Y. An experimental study of the crack growth behavior of 16MnR pressure vessel steel [J]. Journal of Pressure Vessel Technology, 2009, 131: 021401―021409.
[9]  Jiang Y,Sehitoglu H. Modeling of cyclic ratcheting plasticity, Part I: Development of constitutive relations [J]. ASME Journal of Applied Mechanics, 1996, 63(3): 720―725.
[10]  Jiang Y,Sehitoglu H. Modeling of cyclic ratcheting plasticity, Part II: Comparison of model simulations with experiments [J]. Journal of Applied Mechanics, 1996, 63(3): 726―733.
[11]  庄力健,高增梁,王效贵,陈冰冰,陈学东,Jiang Y. 16MnR钢在不同应力比下的疲劳裂纹扩展的试验研究及模拟[J]. (压力容器), 2007, 24: 1―7.Zhuang Lijian,Gao Zengliang,Wang Xiaogui,Chen Bingbing,Chen Xuedong,Jiang Y. An experimental study and simulation of fatigue crack propagation of 16MnR steel [J]. Pressure Vessel Technology, 2007, 24: 1―7. (in Chinese)
[12]  Zapatero J,Moreno B,Gonzalez-Herrera A. Fatigue crack closure determination by means of finite element analysis [J]. Engineering Fracture Mechanics, 2008, 75: 41―57.
[13]  Jiang Y. A fatigue criterion for general multiaxial loading [J]. Fatigue & Fracture of Engineering Materials & Structures, 2000, 23(1): 19―32.
[14]  Jiang Y,Feng M L. Modeling of fatigue crack propagation [J]. ASME Journal of Engineering Materials and Technology, 2004, 126(1): 77.
[15]  Elber W. Fatigue crack closure under cyclic tension [J]. Engineering Fracture Mechanics, 1970, 2: 37―45.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133