全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2013 

基于两种破裂判据的裂隙岩体单轴压缩起裂分析

DOI: 10.6052/j.issn.1000-4750.2012.06.0413, PP. 227-235

Keywords: 裂隙岩体,破裂判据,椭圆裂隙,裂隙倾角,单轴压缩

Full-Text   Cite this paper   Add to My Lib

Abstract:

该文引入Rankine最大拉应力准则和Mohr-coulomb剪切破坏准则分别作为岩石基质的拉伸和压剪破裂判据,分析了单轴压缩下裂隙岩体的起裂机制。根据含单个椭圆裂隙的无限域岩体在单轴压缩下的应力理论解,编制了Matlab程序,计算分析了不同短轴与长轴比k和倾角α(加载轴与裂隙长轴间的夹角)下的岩石基质应力集中系数、两种不同起裂机制的破裂函数值、开裂位置和开裂临界荷载。对多裂隙岩体,采用ABAQUS有限元软件进行了应力计算和起裂机制分析。计算结果表明:1)与单裂隙岩体相比,多裂隙岩体的岩石基质应力集中系数略大、起裂临界荷载略小,但起裂位置相同;2)随着裂隙倾角α的增大,岩石基质的主拉应力集中区由裂隙端部附近很小的区域逐渐变为裂隙中部的大面积区域,而主压应力集中区则反之;3)存在临界裂隙倾角α0,其值在45°附近。当裂隙倾角0<α≤α0时,在裂隙端部同时有拉应力和压剪应力集中,拉破裂临界荷载小于压剪破裂临界荷载,但随着裂隙轴比的增大二者逐渐相等,表明岩体受拉破裂和压剪破裂共同影响越来越明显;当α0<α≤90°时,尽管拉破裂临界荷载大于压剪破裂临界荷载,但首先发生在裂隙端部的压剪破裂区范围很小,而随后将在裂隙中部或端部发生大量的拉伸破裂。上述分析结果与实验现象较为吻合。

References

[1]  Hoek E, Brown E T. Empirical strength criterion for rock masses [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1980, 106(GT9): 1013―1035.
[2]  Lajtai E Z. A theoretical and experimental evaluation of the Griffith theory of brittle fracture [J]. Tectonophysics, 1971, 11(2): 129―156.
[3]  Kawakata H, Shimada M. Theoretical approach to dependence of crack growth mechanism on confining pressure [J]. Earth Planets Space, 2000, 52(5): 315―320.
[4]  张敦福, 朱维申, 李术才, 郭彦双. 围压和裂隙水压力对岩石中椭圆裂纹初始开裂的影响[J]. 岩石力学与工程学报, 2004, 23(增刊2): 4721―4725.
[5]  Zhang Dunfu, Zhu Weishen, Li Shucai, Guo Yanshuang. Influence of confining pressure and fissure water pressure on initial opening for ellipse fracture [J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(Suppl 2): 4721―4725. (in Chinese)
[6]  郭少华, 孙宗颀. 压应力下脆性椭圆型裂纹的断裂规律[J]. 中南工业大学学报, 2001, 32(5): 457―460.Guo Shaohua, Sun Zongqi. Fracture law of an elliptical brittle crack under compressive loading [J]. Journal of Central South University, 2001, 32(5): 457―460. (in Chinese)
[7]  Shen B, Stephansson O, Einstein H H, Ghahreman B. Coalescence of fractures under shear stresses in experiments [J]. Journal of Geophysical Research, 1995, 100(B4): 5975―5990.
[8]  Bobet A, Einstein H H. Fracture coalescence in rock-type material under uniaxial and biaxial compression [J]. International Journal of Rock Mechanics & Mining Sciences, 1998, 35(7): 836―888.
[9]  Wong L N Y, Einstein H H. Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression [J]. International Journal of Rock Mechanics & Mining Sciences, 2009, 46(2): 239―249.
[10]  Wong L N Y, Einstein H H. Crack coalescence in molded gypsum and Carrara marble: part1-macroscopic observations and interpretation [J]. Rock Mechanics and Rock Engineering, 2009, 42(3): 475―511.
[11]  陈新, 廖志红, 李德建. 节理倾角及连通率对岩体强度、变形影响的单轴压缩试验研究[J]. 岩石力学与工程学报, 2011, 30(4): 781―789.
[12]  Chen Xin, Liao Zhihong, Li Dejian. Experimental study on the effect of joint orientation and persistence on the strength and deformation properties of rock masses under uniaxial compression [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(4): 781―789. (in Chinese)
[13]  Lin P, Wong R H C, Chau K T, Tang C A. Multi-crack coalescence in rock-like material under uniaxial and biaxial loading [J]. Key Engineering Materials, 2000, 183(1): 809―814.
[14]  Prudencio M, Jan M V S. Strength and failure modes of rock mass models with non-persistent joints [J]. International Journal of Rock Mechanics & Mining Sciences, 2007, 44(6): 890―902.
[15]  Lajtai E Z. Strength of discontinuous rocks in direct shear [J]. Geotechnique, 1969, 19(2): 218―233.
[16]  Gehle C, Kutter H K. Breakage and shear behaviour of intermittent rock joints [J]. International Journal of Rock Mechanics & Mining Sciences, 2003, 40(5): 687―700.
[17]  白世伟, 任伟中, 丰定祥, 周少怀. 共面闭合断续节理岩体强度特性直剪试验研究[J]. 岩土力学, 1999, 20(2): 10―16.
[18]  Bai Shiwei, Ren Weizhong, Feng Dingxiang, Zhou Shaohuai. Research on the strength behavior of rock containing coplanar close intermittent joints by direct shear test [J]. Rock and Soil Mechanics, 1999, 20(2): 10―16. (in Chinese)
[19]  Inglis C E. Stresses in a plate due to the presence of cracks and sharp corners [J]. Institution of Naval Architects, London, 1913, 55: 219―230.
[20]  Muskhelishvili N I. Some Basic problems of the mathematical theory of elasticity [M]. 4th ed. Noordhoff, Groningen, 1953: 361.
[21]  Jaeger J C, Cook N G W, Zimmerman R W. Fundamentals of rock mechanics [M]. 4th ed. Blackwell Publishing Ltd., Malden, 2007: 231.
[22]  Griffith A A. The theory of rupture [J]. Proceedings of the First International Congress for Applied Mechanics, Delft, 1924: 55―63.
[23]  Hoek E, Bieniawski Z T. Brittle fracture propagation in rock under compression [J]. International Journal of Fracture Mechanics, 1965, 1(3): 137―155. (注: 这篇文章在1984年重新印刷在1984, 26: 276―296)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133