全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2013 

位错和均匀分布载荷作用下的二维十次对称准晶的弹性分析

DOI: 10.6052/j.issn.1000-4750.2012.10.0803, PP. 61-66

Keywords: 准晶,位错,均匀分布载荷,复变方法,应变能

Full-Text   Cite this paper   Add to My Lib

Abstract:

复变函数方法是经典弹性理论中求解平面弹性与缺陷问题非常有效的方法。该文推广了经典弹性理论的复变函数方法,研究了位错和均匀分布载荷作用下的二维十次对称准晶的弹性场。根据偏微分方程理论,用四个解析函数给出了应力和位移的复表达式。在此基础上,结合边界条件,获得了声子场和相位子场应力及位错应变能的解析表达式。讨论了声子场与相位子场耦合弹性常数对应变能的影响。

References

[1]  Shechtman D, Blech I, Gratias D, Cahn J W. Metallic phase with long-range orientational order and no translational symmetry [J]. Physical Review Letters, 1984, 53(20): 1951―1953.
[2]  Meng X M, Tong B Y, Wu Y K. Mechanical behaviour of Al65Cu20Co15 quasicrystal [J]. Acta Metal Sinica, 1994, 30(1): 61―64.
[3]  De P, Pelcovits A. Linear elasticity theory of pentagonal quasicrystals [J]. Physical Review B, 1987, 35(16): 8609―8620.
[4]  Li X F, Fan T Y, Sun Y F. A decagonal quasicrystal with a Griffith crack [J]. Philosophical Magazine A, 1999, 79(8): 1943―1952.
[5]  Hu C Z, Wang R H, Ding D H. Symmetry groups, physical property tensors, elasticity and dislocation in quasicryatal [J]. Reports on Progress in Physics, 2000, 63(1): 1―39.
[6]  Peng Y Z, Fan T Y. Perturbative method for solving elastic problems of one-dimensional hexagonal quasicrystals [J]. Journal of Physics: Condensed Matter, 2001, 13(18): 4123―4128.
[7]  Fan T Y, Mai Y W. Elasticity theory, fracture mechanics, and some relevant thermal properties of quasi-crystalline materials [J]. Applied Mechanics Review, 2004, 57(5): 325―343.
[8]  Guo J H, Lu Z X. Exact solution of four cracks originating from an elliptical hole in one-dimensional hexagonal quasicrystals [J]. Applied Mathematics and Computation, 2011, 217(22): 9397―9403.
[9]  刘官厅, 冯中华. 一维正方准晶椭圆孔口反平面问题的半逆解法[J]. 工程力学, 2013, 30(2): 38―43.
[10]  Liu Guanting, Feng Zhonghua. Half-inverse method for the anti-plane problem of one-dimensional orthorhombic quasicrystals with elliptical hole [J]. Engineering Mechanics, 2013, 30(2): 38―43. (in Chinese)
[11]  Li W. Analytic solutions to a finite width strip with a single edge crack of two dimensional quasicrystals [J]. Chinese Physics B, 2011, 20(11): 1―8.
[12]  Li L H, Fan T Y. Stress potential function formulation and complex variable function method for solving the elasticity of quasicrystals of point group 10 and the exact solution for the notch problem [J]. Journal of Physics: Condensed Matter, 2006, 18(47): 10631―10641.
[13]  Gao Y, Ricoeur A, Zhang L. Plane problems of cubic quasicrystal media with an elliptic hole or a crack [J]. Physics Letters A, 2011, 375(28/29): 2775―2781.
[14]  Muskhelishvili N I. Some basic problems of mathematical theory of elasticity [M]. Noordhoff Groningen, 1963: 123―132.
[15]  Chernikov M A, Ott H R, Bianchi A, Migliori A, Darling T W. Elastic moduli of a single quasicrystal of decagonal Al-Ni-Co: evidence for transverse elastic isotropy [J]. Physical Review Letters, 1998, 80(2): 321―324.
[16]  Jeong H C, Steinhardt P J.Finite-temperature elasticity phase transition in decagonal quasicrystals [J]. Physical Review B, 1993,48(13): 9394―9403.
[17]  Mikulla R, Gumbsch P, Trebin H R. Molecular dynamics simulations of crack propagation in quasicrystals [J]. Philosophical Magazine Letters, 1998, 78(8): 369―375.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133