全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2013 

多体动力学热-结构耦合圆管单元及其应用

DOI: 10.6052/j.issn.1000-4750.2012.07.0504, PP. 28-35

Keywords: 热诱发振动,热-结构耦合,空间结构,热颤振,柔性多体系统动力学,欧拉梁

Full-Text   Cite this paper   Add to My Lib

Abstract:

航天器柔性附件在突加太阳辐射热载荷作用下的热诱发振动会严重影响航天器的正常工作。航天器是典型的多体系统;部件间的相互作用会严重影响航天器的热诱发振动响应,因而有必要使用多体系统动力学的方法对此进行研究。该文在柔性多体系统动力学框架内,推导建立了一种考虑辐射换热的热-结构耦合圆管单元。温度变化会使圆管单元产生轴向伸缩和横向弯曲;同时,在给定辐射热流作用下,圆管单元受热条件与其姿态和变形相关。使用该圆管单元、刚体单元和柔性体单元可以实现多体系统动力学热-结构耦合分析。该文的方法首先用于哈勃太空望远镜太阳能电池板简化模型的热诱发振动分析,所得结果与文献结果吻合良好。然后,该文研究了由本体、动量轮、柔性支撑杆和端部质量组成的航天器在突加辐射热流作用下的振动响应。结果表明:各部件间的相互作用会对航天器的热诱发振动响应产生显著影响。

References

[1]  薛明德, 向志海. 大型空间结构的热-动力学耦合问题及其有限元分析[J]. 固体力学学报, 2011, 32(S1): 318―328.
[2]  Xue Mingde, Xiang Zhihai. Thermal-dynamic coupling problem of large space structures and its FEM analyses [J]. Chinese Journal of Solid Mechanics, 2011, 32(S1): 318―328. (in Chinese)
[3]  Thornton E A. Thermal structures for aerospace applications [M]. Virginia: AIAA, 1996: 343―346.
[4]  Boley B A. Approximate analyses of thermally induced vibrations of beams and plates [J]. Journal of Applied Mechanics-Transactions of the Asme, 1972, 39(1): 212―216.
[5]  陈务军, 张淑杰. 空间可展结构体系与分析导论[M]. 北京: 中国宇航出版社, 2006: 3―25.
[6]  Chen Wujun, Zhang Shujie. Deployable space structures and analysis theory [M]. Beijing: China Astronautic Publishing House, 2006: 3―25. (in Chinese)
[7]  Xue M D, Duan J, Xiang Z H. Thermally-induced bending-torsion coupling vibration of large scale space structures [J]. Computational Mechanics, 2007, 40(4): 707―723.
[8]  Johnston J D, Thornton E A. Thermally induced dynamics of satellite solar panels [J]. Journal of Spacecraft and Rockets, 2000, 37(5): 604―613.
[9]  Park S Y. Thermally induced attitude disturbance control for spacecraft with a flexible boom [J]. Journal of Spacecraft and Rockets, 2002, 39(2): 325―328.
[10]  Jiang J P, Li D X. Finite element formulations for thermopiezoelastic laminated composite plates [J]. Smart Materials and Structures, 2008, 17(1): 015027.
[11]  蒋建平, 李东旭. 热载荷下压电复合板有限元建模与形变控制[J]. 力学学报, 2007, 39(4): 503―509.
[12]  Jiang Jianping, Li Dongxu. Finite element modeling and shape control for piezoelectric composite plates under thermal load [J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(4): 503―509. (in Chinese)
[13]  Thornton E A, Kim Y A. Thermally-induced bending vibrations of a flexible rolled-up solar-array [J]. Journal of Spacecraft and Rockets, 1993, 30(4): 438―448.
[14]  Gulick D W, Thornton E A. Thermally-induced vibrations of a spinning spacecraft boom [J]. Acta Astronautica, 1995, 36(3): 163―176.
[15]  Ko K E, Kim J H. Thermally induced vibrations of spinning thin-walled composite beam [J]. Aiaa Journal, 2003, 41(2): 296-303.
[16]  Xue M D, Ding Y. Two kinds of tube elements for transient thermal-structural analysis of large space structures [J]. International Journal for Numerical Methods in Engineering, 2004, 59(10): 1335―1353.
[17]  Li W, Xiang Z, Chen L, et al. Thermal flutter analysis of large-scale space structures based on finite element method [J]. International Journal for Numerical Methods in Engineering, 2007, 69(5): 887-907.
[18]  Duan J, Xiang Z H, Xue M D. Geometric nonlinear analyses for large space frames considering thermal-structural coupling [J]. Journal of Thermal Stresses, 2007, 31(1): 40―58.
[19]  李伟, 薛明德, 向志海. 空间结构热-动力学耦合系统稳定性的有限元分析[J]. 清华大学学报(自然科学版), 2007, 47(11): 2076―2080.
[20]  Li Wei, Xue Mingde, Xiang Zhihai. Stability analysis of coupled thermal-dynamic systems in space structures based on FEM [J]. Journal of Tsinghua University (Science and Technology), 2007, 47(11): 2076―2080. (in Chinese)
[21]  薛明德, 李伟, 向志海. 中心舱体-附件耦合系统热颤振有限元分析[J]. 清华大学学报(自然科学版), 2008, 48(2): 270―275.
[22]  Xue Mingde, Li Wei, Xiang Zhihai. Thermal flutter analysis of a spacecraft with a flexible appendage based on FEM [J]. Journal of Tsinghua University (Science and Technology), 2008, 48(2): 270―275. (in Chinese)
[23]  李伟, 薛明德, 向志海. 刚体-附件耦合系统热-动力学稳定性分析[J]. 浙江大学学报(工学版), 2009, 43(7): 1288―1292.
[24]  Li Wei, Xue Mingde, Xiang Zhihai. Thermal-dynamic stability analysis of structural appendages attached to satellite [J]. Journal of Zhejiang University (Engineering Science), 2009, 43(7): 1288―1292. (in Chinese)
[25]  Tsuchiya K. Thermally induced vibrations of a flexible appendage attached to a spacecraft [J]. Aiaa Journal, 1977, 15(4): 505―510.
[26]  Wasfy T M, Noor A K. Computational strategies for flexible multibody systems [J]. Applied Mechanics Reviews, 2003, 56(6): 553―613.
[27]  Liu J Y, Lu H. Thermal effect on the deformation of a flexible beam with large kinematical driven overall motions [J]. European Journal of Mechanics A-Solids, 2006, 26(1): 137―151.
[28]  刘锦阳, 陆皓. 考虑热应变的柔性并联空间机械臂动力学[J]. 应用力学学报, 2007, 24(03): 391―395, 503.
[29]  Liu Jinyang, Lu Hao. Parallel manipulator dynamics with thermal strain [J]. Chinese Journal of Applied Mechanics, 2007, 24(3): 391―395, 503. (in Chinese)
[30]  Li T J, Wang Y. Deployment dynamic analysis of deployable antennas considering thermal effect [J]. Aerospace Science and Technology, 2009, 13(4/5): 210―215.
[31]  Wu J, Zhao Z, Ren G. Dynamic analysis of space structure deployment with transient thermal load [J]. Advanced Materials Research, 2012, 479/480/481: 803―807.
[32]  Hairer E, Wanner G. Solving ordinary differential equations II: Stiff and differential-algebraic problems [M]. Berlin: Springer-Verlag, 1996: 451―563.
[33]  王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003: 447―448.
[34]  Wang Xucheng. Finite element methos [M]. Beijing: Tsinghua University Press, 2003: 447―448. (in Chinese)
[35]  Zhao Z, Ren G. A quaternion-based formulation of euler-bernoulli beam without singularity [J]. Nonlinear Dynamics, 2011, 67(3): 1―11.
[36]  Shabana A A. Dynamics of multibody systems [M]. New York: Cambridge University, 2005: 244―248.
[37]  Dmitrochenko O N, Pogorelov D Y. Generalization of plate finite elements for absolute nodal coordinate formulation [J]. Multibody System Dynamics, 2003, 10(1): 17―43.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133