全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2013 

基于比例边界有限元法和有限元法的水下结构瞬态分析方法

DOI: 10.6052/j.issn.1000-4750.2012.07.0532, PP. 42-46

Keywords: 比例边界有限元法,无限水域,水下结构,瞬态分析,水下冲击,流固耦合

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对冲击波作用下水下结构与无限声学水域的流固耦合问题,建立了基于比例边界有限元法和有限元法的瞬态分析方法。无限水域用比例边界有限元法离散,而水下结构等有限域用有限元法模拟。该方法利用声学近似法将无限水域施加给水下结构的载荷分解成冲击波载荷和散射波载荷。冲击波载荷由水下冲击波理论确定,而散射波载荷由比例边界有限元法估值。为改善比例边界有限元法动态质量矩阵的计算效率,发展了动态质量矩阵的时域递推公式。数值算例分析结果表明了所发展的瞬态分析方法和时域递推公式的正确性。

References

[1]  Li J, Rong J L. Experimental and numerical investigation of the dynamic response of structures subjected to underwater explosion [J]. European Journal of Mechanics B/Fluids, 2012, 32: 59―69.
[2]  Hamdan F H, Dowling P J. Far-field fluid-structure interaction formulation and validation [J]. Computers and Structures, 1995, 56(6): 949―958.
[3]  Shin Y S. Ship shock modeling and simulation for far-field underwater explosion [J]. Computers and Structures, 2004, 82(23/24/25/26): 2211―2219.
[4]  王诗平, 孙士丽, 张阿漫, 陈海龙. 冲击波和气泡作用下舰船结构动态响应的数值模拟[J]. 爆炸与冲击, 2011, 31(4): 367―372.
[5]  Wang Shiping, Sun Shili, Zhang Aman, Chen Hailong. Numerical simulation of dynamic response of warship structures [J]. Explosion and Shock Waves, 2011, 31(4): 367―372. (in Chinese)
[6]  Hung C F, Lin B J, Fuu J J H, Hsu P H. Dynamic response of cylindrical shell structures subjected to underwater explosion [J]. Ocean Engineering, 2009, 36(8): 564―577.
[7]  贾宪振, 胡毅亭, 董明荣, 等. 深水环境中水下爆炸冲击波作用下圆柱壳动态响应的数值模拟研究[J]. 振动与冲击, 2008, 27(5): 160―165.
[8]  Jia Xianzhen, Hu Yiting, Dong Mingrong, et al. Dynamic response of cylindrical shell subjected to underwater explosion shock waves in deep water [J]. Journal of Vibration and Shock, 2008, 27(5): 160―165. (in Chinese)
[9]  徐永刚, 宗智, 李海涛. 水下爆炸冲击波和气泡联合作用下结构响应数值分析[J]. 中国舰船研究, 2011, 6(3): 8―11.
[10]  Xu Yonggang, Zong Zhi, Li Haitao. Numerical analysis of structure response due to the combined effects of underwater explosion shock wave and bubble pulse [J]. Chinese Journal of Ship Research, 2011, 6(3): 8―11. (in Chinese)
[11]  Wolf J P, Song C. Consistent infinitesimal finite element cell method: three-dimensional scalar wave equation [J]. Journal of Applied Mechanics, ASME, 1996, 63(3): 650―654.
[12]  Fan S C, Li S M, Yu G Y. Dynamic fluid-structure interaction analysis using boundary finite element method-finite element method [J]. Journal of Applied Mechanics, ASME, 2005, 72(4): 591―598.
[13]  Li S M, Fan S C. Parametric analysis of a submerged cylindrical shell subjected to shock waves [J]. China Ocean Engineering, 2007, 21(1): 125―136.
[14]  Cole H. Underwater explosion [M]. New Jersey: Princeton University Press, 1948: 228―233.
[15]  Lamb H. Hydrodynamics [M]. 6th ed. New York: Dover, 1932: 476―477.
[16]  Huang H. An exact analysis of the transient interaction of acoustic plane waves with a cylindrical elastic shell [J]. Journal of Applied Mechanics, ASME, 1970, 37(4): 1091―1099.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133