全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2013 

超弹性柔性结构与流体耦合运动的浸入边界法研究

DOI: 10.6052/j.issn.1000-4750.2012.07.0505, PP. 36-41

Keywords: 流固耦合,浸入边界法,自适应网格,超弹性柔性结构,流激振动

Full-Text   Cite this paper   Add to My Lib

Abstract:

浸入边界法是模拟大变形柔性弹性结构和粘性流体相互作用的重要数值方法之一。该文有效结合传统的反馈力方法和混合有限元浸入边界方法,对圆柱和方柱绕流后柔性悬臂梁流固耦合振动问题进行数值模拟。其中,固体采用超弹性材料,利用有限单元法求解,流体为不可压缩牛顿流体,使用笛卡尔自适应加密网格,利用有限差分法进行求解。通过数值计算,得到柔性超弹性结构的耦合振动特性和流场动态分布特性,并将计算结果同其他文献计算结果进行比较,验证了该耦合计算方法的可靠性。

References

[1]  王文全, 闫妍, 张立翔, 张承磊. 一种基于压力泊松方程的流体结构紧耦合算法[J]. 工程力学, 2012, 29(3): 9―15.
[2]  Wang Wenquan, Yan Yan, Zhang Lixiang, Zhang Chenglei. A monolithic fluid-structure interaction approach based on the pressure poisson equation [J]. Engineering Mechanics, 2012, 29(3): 9―15. (in Chinese)
[3]  张立翔, 郭亚昆, 王文全. 强耦合流激振动的建模及求解的预测多修正算法[J]. 工程力学, 2010, 27(5): 36―44.
[4]  Zhang Lixiang, Guo Yakun, Wang Wenquan. Modeling of strongly coupled flow-induced vibration and solving method on predicror multi-corrector algorithm [J]. Engineering Mechanics, 2010, 27(5): 36―44. (in Chinese)
[5]  宫兆新. 浸入边界法及其在细胞力学中的应用[D]. 上海交通大学, 2010.
[6]  Gong Zhaoxin. Research on the immersed boundary method and its application on cell mechanics [D]. Shanghai Jiaotong University, 2010. (in Chinese)
[7]  Boffi D, Gastaldi L, Heltai L, et al. On the hyper-elastic formulation of the immersed boundary method [J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(25/28): 221―223.
[8]  Griffith B E, Hornung R D, McQueen D M, et al. An adaptive formally second order accurate version of the immersed boundary method [J]. Journal of Computational Physics, 2007, 223(1): 10―49.
[9]  Zhang L, Gerstenberger A, Wang X, et al. Immersed finite element method [J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(21/22): 2051―2067.
[10]  Wang Xiaodong, Liu Wingkam. Extended immersed boundary method using FEM and RKPM [J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(12/13/14): 1305―1321.
[11]  Ji C, Munjiza A, Williams J J R. A novel iterative direct-forcing immersed boundary method and its finite volume applications [J]. Journal of Computational Physics, 2012, 231(4): 1797―1821.
[12]  Boffi D, Gastaldi L. A finite element approach for the immersed boundary method [J]. Computer and Structure, 2003, 81(8/9/10/11): 491―501.
[13]  Goldstein D, Handler R, Sirovieh L. Modeling a no-slip flow boundary with an external force field [J]. Journal of Computational Physics, 1993, 105(2): 354―366.
[14]  Turek S, Hron J. Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow [C]. Bungartz H J, Sch#x000e4;fer M. Fluid-Structure Interaction: Modelling, Simulation, Optimization, Springer, 2006: 371―385.
[15]  Turek S, Hron J, Razzaq M, et al. Numerical Benchmarking of Fluid-Structure Interaction: A comparison of different discretization and solution approaches [C]. Bungartz H J, Mehl M, Sch#x000e4;fer M. Fluid-Structure Interaction II: Modelling, Simulation, Optimization, Springer, 2010: 413―424.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133