Conci A, Gattass M. Natural approach for thin-walled beam-columns with elastic-plasticity [J]. International Journal for Numerical Methods in Engineering, 1990, 29(8): 1653―1679.
[2]
Attalla M R, Deierlein G G, McGuire W. Spread of plasticity: quasi-plastic-hinge approach [J]. Journal of Structural Engineering ASCE, 1994, 120(8): 2451―2473.
[3]
Chen W F, Chan S L. Second order inelastic analysis of steel frames using element with mid-span and end springs [J]. Journal of Structural Engineering ASCE, 1995, 121(3): 530―541.
[4]
Turkalj G, Brnic J, Prpic-Orsic J. ESA formulation for large displacement analysis of framed structures with elastic-plasticity [J]. Computers Structures, 2004, 82(23/24/25/26): 2001―2013.
[5]
Ngo-Huu C, Kim S E, Oh J R. Nonlinear analysis of space steel frames using fiber plastic hinge concept [J]. Engineering Structures, 2007, 29(4): 649―657.
[6]
沈世钊, 陈昕. 网壳结构稳定性[M]. 北京: 科学出版社, 1999.
[7]
Shen Shizhao, Chen Xin. Stability of latticed shells [M]. Beijing: Science Press, 1999. (in Chinese)
[8]
Park M S, Lee B C. Geometrically non-linear and elastoplastic three-dimensional shear flexible beam element of von-Mises-type hardening material [J]. International Journal for Numerical Methods In Engineering, 1996, 39(3): 383―408.
[9]
Lanc D, Turkalj G, Brnic J. Large-displacement analysis of beam-type structures considering elastic-plastic material behavior [J]. Materials Science and Engineering A, 2009, 499(1/2): 142―146.
[10]
Teh L H, Clarke M J. Plastic-zone analysis of 3D steel frames using beam elements [J]. Journal of Structural Engineering ASCE, 1999, 125(11): 1328―1337.
[11]
Crisfield M A. A faster modified Newton-Raphson iteration [J]. Computer Methods in Applied Mechanics and Engineering, 1979, 20(3): 267―278.
[12]
Crisfield M A. A fast incremental/iterative solution procedure that handles #x0201c;snap-through#x0201d; [J]. Computers Structures, 1981, 13(1/2/3): 55―62.
[13]
Crisfield M A. An arc-length method including line searches and accelerations [J]. International Journal for Numerical Methods in Engineering, 1983, 19(9): 1269―1289.
[14]
Crisfield M A. Combining arc-length control and line searches in path following [J]. Communications in Numerical Methods in Engineering, 1995, 11(10): 793―803.
[15]
Batoz J L, Dhatt G. Incremental displacement algorithms for nonlinear problems. International Journal for Numerical Methods in Engineering, 1979, 14(8): 1262―1267.
[16]
Teh L H, Clarke M J. Co-rotational and Lagrangian formulations for elastic three-dimensional beam finite elements. Journal of Constructional Steel Research, 1998, 48(2/3): 123―144.
[17]
Simo J C, Hughes T J R. Computational Inelasticity [M]. Springer, New York, 1998.
[18]
Potts D M, Gens A. A critical assessment of methods of correcting for drift from the yield surface in elasto-plastic finite element analysis [J]. International Journal for Numerical and Analytical methods in Geomechanics, 1985, 9(2):149―159.
[19]
Desai C S, Sharma K G, Wathugala G W, Rigby D B. Implementation of hierarchical single surface #x003b4;0 and #x003b4;1 models in finite element procedure [J]. International Journal For Numerical and Analytical methods in Geomechanics, 1991, 15(9): 649―680.
Ye Kangsheng, Lu Tiantian, Yuan Si. A direct method for the computation of critical points in geometric nonlinear analysis [J]. Engineering Mechanics, 2010, 27(10): 1―6, 13. (in Chinese)