全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2013 

运营状态下悬索桥钢桥面板疲劳效应监测与分析

DOI: 10.6052/j.issn.1000-4750.2012.07.0551, PP. 94-100

Keywords: 疲劳效应,正交异性钢桥面板,沥青铺装层,环境温度,车流量,有限元,结构健康监测

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于润扬大桥悬索桥7个月的长期疲劳效应监测结果,建立了铺装层-钢桥面板一体化疲劳分析模型,并研究了两类关键焊接细节的疲劳效应与车流量、环境温度间的相关性关系。结果表明,两类焊接细节的应力循环次数与车流量线性相关而与环境温度无关,等效应力幅与环境温度线性相关而与车流量无关。由疲劳设计指南推荐的疲劳效应计算模型得到的应力循环次数较监测结果偏低,顶板-纵肋焊接细节的等效应力幅与监测结果吻合良好而纵肋对接焊接细节的结果较为保守。上述分析结果为疲劳设计指南的进一步改进和完善提供参考和依据。

References

[1]  王高新, 丁幼亮, 李爱群, 周广东. 基于长期监测数据的润扬大桥斜拉桥钢箱梁横向温差特性研究[J]. 工程力学, 2013, 30(1): 163―167, 197.
[2]  Wang Gaoxin, Ding Youliang, Li Aiqun, Zhou Guangdong. Characteristics of transverse temperature differences of steel box girder in Runyang Cable-stayed Bridge using long-term monitoring [J]. Engineering Mechanics, 2013, 30(1): 163―167, 197. (in Chinese)
[3]  Mustafa Ayg#x000fc;l, Mohammad Al-Emrani, Shota Urushadze. Modeling and fatigue life assessment of orthotropic bridge deck details using FEM [J]. International Journal of Fatigue, 2012, 40(3): 129―142.
[4]  中华人民共和国行业标准. 正交异性钢桥面系统的设计和维护指南(报批稿)[S]. 2010.
[5]  Industry Standard of the People#x02019;s Republic of China. Guidelines for design and maintain of orthotropic steel deck (Edition for approval) [S]. 2010. (in Chinese)
[6]  Wu Z J, Ghosh K, Qing X L, et al. Structural health monitoring results on Tsing Ma, Kap Shui Mum and Ting Kau bridges [C]. Proceeding of SPOE- The International Society for Optical Engineering, Smart Structures and Materials 2006 - Sensors and Smart Structures Technologies for Civil, Mechanical and Aerospace Systems, San Diego, CA, 2006.
[7]  Wang Y, Li Z X, Li A Q. Combined use of SHMS and finite element strain data for assessing the fatigue reliability index of girder components in long-span cable-stayed bridge [J]. Theoretical and Applied Fracture Mechanics, 2010, 54(2): 127―136.
[8]  邓扬, 丁幼亮, 李爱群. 钢箱梁焊接细节基于长期监测数据的疲劳可靠性评估:疲劳可靠度指标[J], 土木工程学报, 2012, 45(3): 86―92.
[9]  Deng Yang, Ding Youliang, Li Aiqun. Fatigue reliability assessment for welded details of steel box girders using long-term monitoring data: fatigue reliability indices [J]. Chinese Civil Engineering Journal, 2012, 45(3): 86―92. (in Chinese)
[10]  Downing S D, Socie D F. Simplified rainflow cycle counting algorithms [J]. International Journal of Fatigue, 1982, 4(1): 31―40.
[11]  Guo T, Li A Q, Wang H. Influence of ambient temperature on the fatigue damage of welded bridge decks [J]. International Journal of Fatigue, 2008, 30(6): 1092―1102.
[12]  BSI BS5400: Part10, Code of Practice for Fatigue [S]. British Standards Institution, 1982.
[13]  BS 7608. Fatigue design and assessment of steel structures [S]. Standards Institution, 1993.
[14]  Bohai Ji, Dong-hua Chen, Lin Ma, et al. Research on stress spectrum of steel decks in suspension bridge considering measured traffic flow [J]. Journal of Performance of Constructed Facilities, 2012, 26(1): 65―75.
[15]  Jun-Hyeok Choi, Do-Hwan Kim. Stress characteristics and fatigue crack behavior of the longitudinal rib-to-cross beam joints in an orthotropic steel deck [J]. Advances in Structural Engineering, 2008, 11(2): 189―199.
[16]  邓扬. 基于长期监测数据的大跨桥梁结构状态预警与评估方法及其应用[D]. 南京: 东南大学, 2011: 80―86.
[17]  Deng Yang. Methodology and application of damage alarming and safety assessment for long-span bridge structures based on long-term monitored data [D]. Nanjing: Southeast University, 2011: 80―86. (in Chinese)
[18]  查旭东. 沥青路面反算模量的温度修正[J]. 公路, 2002(6): 51―53.
[19]  Zha Xudong. Temperature adjustment for back calculation moduli of asphalt pavement [J]. Highway, 2002(6): 51―53. (in Chinese)
[20]  李洪涛, 黄卫. 润扬大桥钢桥面板铺装实桥试验研究[J]. 公路交通科技, 2005, 22(4): 76―78.
[21]  Li Hongtao, Huang Wei. Study on deck surfacing of trail bridge for Runyang Bridge [J]. Journal of Highway and Transportation Research and Development, 2005, 22(4): 76―78. (in Chinese)
[22]  Kim Y M, You K P, Ko N H. Across-wind responses of an aeroelastic tapered tall buildings [J]. Journal of Wind Engineering Industrial Aerodynamics, 2008, 96(8/9): 1307―1319.
[23]  Kareem A, Kijewski T, Tamura Y. Mitigation of motions of tall buildings with specific examples of recent applications [J]. Wind Structure, 1999, 2(3): 201―251.
[24]  Kim Y M, Kawai H. Aerodynamic methods for reducing bending and torsional vibrations of tall building [C]. Proceedings of the 10th International Conference on Wind Engineering, Copenhagen, Denmark, 1999: 673―677.
[25]  黄鹏, 顾明, 全涌. 高层建筑气动阻尼的实验研究[C]. 西安: 第十二届全国结构风工程学术会议, 2003: 359―364.
[26]  Huang Peng, Gu Ming, Quan Yong. Experimental study of aerodynamic damping of high-rise buildings [C]. Xi#x02019;an: Proceedings of the 12th National Conference on Structural Wind Engineering, 2003: 359―364. (in Chinese)
[27]  曹会兰. 超高层建筑结构的气动阻尼研究[M]. 上海: 同济大学, 2012: 123―128.
[28]  Cao Huilan. Aerodynamic damping of super-high-rise building [M]. Shanghai: Tongji University, 2012: 123―128. (in Chinese)
[29]  GB50009-2001, 建筑结构荷载规范[S]. 2001.
[30]  GB50009-2001, Architectural structure load standards load code [S]. 2001. (in Chinese)
[31]  AIJ 2004 Recommendations for loads on building [S]. Architectural Institute of Japan, 2004.
[32]  Tamura Y, Suganuma S Y. Evaluation of amplitude-dependent damping and natural frequency of buildings during strong winds [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 59(2/3): 115―130.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133