全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

柔性飞机大变形曲面气动力计算及配平分析

DOI: 10.6052/j.issn.1000-4750.2014.04.0284, PP. 239-249

Keywords: 大展弦比柔性飞机,几何非线性,非线性配平,三维升力线,曲面涡格法

Full-Text   Cite this paper   Add to My Lib

Abstract:

柔性飞机在载荷作用下产生较大的弹性变形并呈现出几何非线性特性,机翼升力面呈现出大变形空间曲面的特征,传统平面气动力的工程分析方法无法给出空间变形下的真实载荷状态进而影响柔性飞机气动弹性分析的准确性。该文基于柔性飞机几何非线性气动弹性分析的需求,建立了曲面三维升力线和曲面涡格两种不同的曲面定常气动力方法,并结合曲面样条插值完成了大变形下结构运动信息与气动载荷信息之间的相互作用和交换,实现气动面随结构变形的自适应更新。进行了柔性飞机的全机非线性配平分析,并对两种不同的气动力方法的分析结果进行对比,归纳出柔性飞机几何非线性气动弹性配平分析的特点。升力线方法分析快速简单,涡格法可以考虑机翼弯度影响,便于复杂模型的多轮次反复计算。两种方法的分析结果具有较好的一致性,当飞机变形较小时都与传统的线性分析方法吻合较好;当结构变形较大时,非线性配平结果随风速和结构质量呈非线性变化,与传统线性分析结果产生明显差别需在设计初期引起重视。

References

[1]  Mayuresh J Patil, Dewey H Hodges. On the importance of aerodynamics and structural geometrical nonlinearities in aeroelastic behavior of high-aspect-ratio wings [C]. Atlanta, GA: 41st AIAA/ASME/ASCE/AHS/ ASC Structures, Structural Dynamics, and Material Conference and Exhibit, 2000: 3―6.
[2]  Xie C C. Static/dynamic coupling theory and test study of aircraft aeroelastic stability [D]. Beijing: Beihang University, 2009.
[3]  Van Schoor M C, von Flotow A H. Aeroelastic characteristics of a highly flexible aircraft [J]. Journal of Aircraft, 1990, 27(10): 901―908.
[4]  Deman Tang, Mark D Conner, Earl H Dowell. Reduced-order aerodynamic model and its application to a nonlinear aeroelastic system [J]. Journal of Aircraft 1998, 35(2): 332―338.
[5]  Mayuresh J Patil, Dewey H Hodges, Carlos E S. Cesnik. Characterizing the effects of geometrical nonlinearities on aeroelastic behavior of high-aspect-ratio wings [C]. Williamsburg, Virginia, USA: International Forum on Aeroelasticity and Structural Dynamics, 1999: 22―25.
[6]  Peters D, Johnson M. Finite-state airloads for deformable airfoils on fixed and rotating wings [J]. Asme- Publications-AD, 1994, 44: 1.
[7]  Drela M. Integrated simulation model for preliminary aerodynamic, structural, and control-law design of aircraft [J]. AIAA Paper, 1999, 99: 1394.
[8]  Su W, Cesnik C E S. Dynamic response of highly flexible flying wings [C]. San Diego, California: 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2006: 412―435 .
[9]  Christopher M Shearer, Carlos E S Cesnik. Nonlinear flight dynamics of very flexible aircraft [J]. Journal of Aircraft, 2007, 44(5): 1528―1545.
[10]  Su W, Cesnik C. Flight dynamic stability of a flapping wing micro air vehicle in hover [C]. Sheraton Denver, Colorado: 52nd AIAA Structures, Structural Dynamics, and Materials Conference, 2011: 4―7.
[11]  Zahra Sotoudeh, Dewey H Hodges, Chang Chong Seok . Validation studies for aeroelastic trim and stability analysis of highly flexible aircraft [J]. Journal of Aircraft, 2010, 44(5): 1528―1545.
[12]  Smith M J, Patil M J, Hodges D H. CFD-based analysis of nonlinear aeroelastic behavior of high-aspect ratio wings [J]. AIAA Paper, 2001, 1582: 2001.
[13]  Mayuresh J Patil, Dewey H Hodges. Flight dynamics of highly flexible flying wings [J]. Journal of Aircraft, 2006, 43(6): 1790―1799.
[14]  Xie Changchuan, Leng Jiazhen, Yang Chao. Geometrical nonlinear aeroelastic stability analysis of a composite high-aspect-ratio wing [J]. Shock and Vibration, 2008, 15(3/4): 325―333.
[15]  Liu Y, Xie C C. The geometric nonlinear static aeroelastic analysis method for flexible wings with large-aspect-ratio [C]. Chengde, Hebei: In: Proceedings of the 12th Domestic Conference on aeroelasticity. 2011: 227―233.
[16]  Wang Libo, Xie Changchuan, Yang Chao. Static Aeroelastic Analysis of Flexible Aircraft with Large Deformations [C]. Boston, Massachusetts: 54thAIAA/ ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2013: 2013―1893.
[17]  Xie C C, Yang C. Surface splines generalization and large deflection interpolation [J]. Journal of Aircraft, 2007, 44(3): 1024―1026.
[18]  Patil Hodges, Cesnik. Nonlinear aeroelastic analysis of complete aircraft in sub-sonic flow [J]. Journal of Aircraft, 2000, 37(5): 753―760.
[19]  Song Tianxia, Nonlinear structure finite element computation [M]. Wuchang: HuaZhong University of Science & Technology Press, 1996: 18.
[20]  Xie C C, Yang C. Linearization method of nonlinear aeroelastic stability for complete aircraft with high- aspect-ratio wings [J]. Science China Technoligial Sciences, 2011, 54(2): 403―411.
[21]  Phillips W F, Snyder D O. Modern adaptation of Prandtl's classic lifting-line theory [J]. Journal of Aircraft, 2000, 37(4): 662―670.
[22]  Fang Z P, Chen W C, Zhang S G. Flight Dynamics of Aerial Vehicles (in Chinese) [M]. Beijing: Beihang University Press, 2005: 16.
[23]  Xie Changchuan, Wang Libo, Yang Chao, Liu Yi. Static aeroelastic analysis of very flexible wing based on the non-planar vortex lattice method [J]. Chinese Journal of Aeronautics, 2013, 26(3): 514―521.
[24]  Xie Changchuan, Liu Yi, Yang Chao. Theoretic analysis and experiment on aeroelasticity of very flexible wing [J]. Science China Technoligial Sciences, 2012, 55(9): 2489―2500.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133