全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

螺栓连接对基础非均匀沉降输电塔的影响研究

DOI: 10.6052/j.issn.1000-4750.2014.03.0212, PP. 209-219

Keywords: 螺栓滑移,连接偏心,输电塔,非均匀沉降,滑移梁模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

对传统结构分析软件分析输电塔在基础非均匀沉降工况下已经破坏,而现实中仍在正常运行的情况。首先,通过试验研究了输电塔中有代表性的螺栓连接接头特性,把试验得到的螺栓连接接头的位移-载荷关系曲线引入到输电塔的有限元模拟中,并且考虑了连接偏心的影响。其次,通过对输电塔的位移、应变和倾角的测量,给出了输电塔在基础非均匀沉降时的受力-变形特性。最后,基于ANSYS开发了滑移梁模型和偏心滑移杆模型,改进了现有的螺栓滑移引入方法,并将数值分析结果与试验结果进行了对比。研究结果表明:螺栓滑移在塔腿中产生附加内力,引起结构内力的重新分布,并且在相同载荷作用下增加了输电塔的变形量;考虑螺栓连接影响的有限元模型分析结果更加接近真实测量值;滑移梁单元模型不仅能够更好地反映输电塔的受力变形特性,而且能够降低现有的螺栓滑移引入方法的工作量。

References

[1]  俞登科, 李正良, 李茂华, 等. 基于矩方法的特高压输电塔抗风可靠度分析[J]. 工程力学, 2013, 30(5): 311―316. Yu Dengke, Li Zhengliang, Li Maohua, et al. Wind- resistant reliability analysis of UHV transmission tower based on moment methods [J]. Engineering Mechanics, 2013, 30(5): 311―316. (in Chinese)
[2]  武钢, 翟长海, 李爽, 等. 大跨越输电塔-线体系的近场脉冲型地震反应分析[J]. 工程力学, 2013, 30(6): 77―82, 106. Wu Gang, Zhai Changhai, Li Shuang, et al. Seismic response of large crossing transmission tower-line system subjected to near-fault ground motions [J]. Engineering Mechanics, 2013, 30(6): 77―82, 106. (in Chinese)
[3]  沈国辉, 袁光辉, 孙炳楠, 等. 覆冰脱落对输电塔线体系的动力冲击作用研究[J]. 工程力学, 2010, 27(5): 210―217. Shen Guohui, Yuan Guanghui, Sun Bingnan, et al. Dynamic impact effects on tower-line due to ice-shedding [J]. Engineering Mechanics, 2010, 27(5): 210―217.(in Chinese)
[4]  Peterson W O. Design of EHV steel tower transmission lines [J]. Journal of Structural Division, Proceedings American Society Civil Engineers, 1962, 88(1): 39―65.
[5]  Marjerrison M. Electric transmission tower design [J]. Journal of Structural Division, Proceedings American Society Civil Engineers, 1968, 94(1): 1―23.
[6]  Williams D C J, Brightwell I W. Stochastic method of assessing the effect of joint deformation on bolted lattice towers[C]. Proceedings of the First International Symposium, Toronto, Canada, 11-13 July, 1986.
[7]  Al-Bermani F, Kitipornchai S, Chan R W K. Failure analysis of transmission towers [J]. Engineering Failure Analysis, 2009, 16(3): 1922―1928.
[8]  Kitipornchai S, Al-Bermani F G A, Peyrot A H. Effect of bolt slippage on ultimate behavior of lattice structures [J]. Journal of Structure Engineering, ASCE, 1994, 120(8): 2281―2287.
[9]  Ungkurapinan N. A study of joint slip in galvanized bolted angle connections [D]. Winnipeg, Canada: University of Manitoba, 2000
[10]  Ungkurapinan N, Chandrakeerthy S R D S, Rajapakse RKND, et al. Joint slip in steel electric transmission towers[J]. Engineering Structure, 2003, 25(6): 779―787.
[11]  Kroeker D. Structural analysis of lattice towers with connection slip modeling [D]. Winnipeg, Canada: University of Manitoba, 2000.
[12]  Ahmed K I E, Rajapakse R K N D, Gadala M S. Influence of bolted-joint slippage on the response of transmission towers subjected to frost-heave [J]. Advance in Structure Engineering, 2009, 12(1): 1―17.
[13]  Jiang W Q, Wang Z Q, Mcclure G, et al. Accurate modeling of joint effects in lattice transmission towers [J]. Engineering Structure, 2011, 33(1): 1817―1827.
[14]  王朋, 陈安生, 张会武, 等. 螺栓扭矩系数影响因素的试验研究[J]. 实验力学, 2013, 28(3): 307―313. Wang Peng, Chen Ansheng, Zhang Huiwu, et al. Experimental study of the factors effecting on bolt torque coefficient [J]. Journal of Experimental Mechanics, 2013, 28(3): 307―313. (in Chinese)
[15]  Delvecchio J N, Soom A. Tolerances and available relative motion in bolted connections [J]. Advances in Design Automation, ASME, 1991, 2(4): 177―183.
[16]  Knight G M S, Santhakumar A R. Joint effects on behavior of transmission towers [J]. Journal of Structural Division, ASCE, 1993, 119(3): 689―712.
[17]  Chan S L, Cho S H. Second-order analysis and design of angle trusses part I: Elastic analysis and design [J]. Engineering Structure. 2008, 30(3): 616―625.
[18]  Chan S L, Cho S H. Second-order analysis and design of angle trusses part II: Plastic analysis and design [J]. Engineering Structure. 2008, 30(3): 626―631.
[19]  Fong M, Cho S H, Chan S L. Design of angle trusses by codes and second-order analysis with experimental verification [J]. Journal of Constructional Steel Research, 2009, 65(4): 2140―2147.
[20]  Chung K F, Lau L. Experimental investigation on bolted connections among cold formed steel members [J]. Engineering Structure, 1999, 21(2): 898―911.
[21]  Chung K F, Ip K H. Finite element modeling of bolted connections between cold-formed steel strips and hot rolled steel plates under static shear loading [J]. Engineering Structure, 2000, 22(2): 1271―1284.
[22]  徐建设, 陈以一, 韩琳, 邓长根. 普通螺栓和承压型高强螺栓抗剪连接滑移过程[J]. 同济大学学报, 2003, 31(5): 510―514. Xu Jianshe, Chen Yiyi, Han Lin, Deng Changgen. Slip process analysis of regular bolt and bearing type high-tensile bolt shear connections [J]. Journal of Tongji University, 2003, 31(5): 510―514. (in Chinese)
[23]  Lee P S, McClure G. A general three-dimensional L-section beam finite element for elastoplastic large deformation analysis [J]. Computers & Structure, 2006, 84(3): 215―29.
[24]  Lee P S, McClure G. Elastoplastic large deformation analysis of a lattice tower structure and comparison with full-scale tests [J]. Journal of Constructional Steel Research, 2007, 63(5): 709―717.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133