全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

基于Rayleigh阻尼模型的竖向混合结构设计阻尼比研究

DOI: 10.6052/j.issn.1000-4750.2014.03.0155, PP. 60-67

Keywords: 竖向混合结构,等效阻尼比,Rayleigh阻尼,近似解耦,响应误差,随机地震动

Full-Text   Cite this paper   Add to My Lib

Abstract:

由两种或两种以上不同材料串联组成的竖向混合结构,结构阻尼特征空间分布存在明显差异,这使得整体结构地震作用下的动力响应难以估计。对于结构初步抗震设计,特别是采用常规商用软件进行分析时,往往需要确定结构的阻尼比系数,这就需要引入等效阻尼比的概念。该文基于Rayleigh阻尼模型,推导了竖向混合结构在谐振荷载下的近似解耦位移响应误差函数,由随机地震动激励下位移响应误差最小,得到最佳等效阻尼比计算公式。将竖向混合结构等效成两自由度结构模型,每一自由度的动力特性由对应子结构的主频确定,对该两自由度模型进行不同子结构特性下最佳等效阻尼比分布和位移响应误差分析。结果表明:采用该文给出的最佳等效阻尼比,能更合理地预测结构在地震作用下的位移响应;而简单地采用单一材料结构阻尼比进行分析,可能会过高或过低估计结构耗能能力。

References

[1]  吕西林. 复杂高层建筑结构抗震理论与应用[M]. 北京: 科学出版社, 2007: 1―200.
[2]  Lü Xilin. Seismic theory and application of complex high-rise structures [M]. Beijing: Science Press, 2007: 1―200. (in Chinese)
[3]  GB 50011-2010, 建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2010.
[4]  GB 50011-2010, Code for seismic design of buildings [S]. Beijing: China Architecture Industry Press, 2010. (in Chinese)
[5]  European standard EN1998-1, Eurocode 8: design of structures for earthquake resistance. Part 1: general rules, seismic action and rules for buildings [S]. European Committee for Standardization, Brussels, 2005.
[6]  Villaverde R. Seismic design of secondary structures: state of the art [J]. Journal of structural engineering, 1997, 123(8): 1011―1019.
[7]  Chen G, Soong T T. Exact solutions to a class of structure-equipment systems [J]. Journal of Engineering Mechanics, 1996, 122(11): 1093―1100.
[8]  刘鑫, 刘伟庆, 苗启松, 王曙光, 杜东升. 砌体加层隔震体系下部结构刚度退化后的抗震性能试验研究[J]. 工程力学, 2013, 30(9): 117―124.
[9]  Liu Xin, Liu Weiqing, Miao Qisong, Wang Shuguang, Du Dongsheng. Experimental study on aseismic performance of the substructure of isolated masonry with added storey after stiffness degeneration [J]. Engineering Mechanics, 2013, 30(9): 117―124. (in Chinese)
[10]  Ji X, Hikino T, Kasai K, et al. Damping identification of a full‐scale passively controlled five-story steel building structure [J]. Earthquake Engineering and Structural Dynamics, 2013, 42(2): 277―295.
[11]  吕西林, 张杰. 钢和混凝土竖向混合结构阻尼特性研究 [J]. 土木工程学报, 2012, 45(3): 10―16.
[12]  Lü Xilin, Zhang Jie. Damping behavior of vertical structures with upper steel and lower concrete components [J]. China Civil Engineering Journal, 2012, 45(3): 10―16. (in Chinese)
[13]  Charney F A, McNamara R J. Comparison of methods for computing equivalent viscous damping ratios of structures with added viscous damping [J]. Journal of Structural Engineering, 2008, 134(1): 32―44.
[14]  Foss K A. Coordinates which uncouple the equations of motion of damped linear dynamic systems [J]. ASME Journal of Applied Mechanics, 1956, 25(5): 361―364.
[15]  Papageorgiou A V, Gantes C J. Equivalent modal damping ratios for concrete/steel mixed structures [J]. Computers and Structures, 2010, 88(19): 1124―1136.
[16]  Huang B C, Leung A Y T, Lam K M, et al. Analytical determination of equivalent modal damping ratios of a composite tower in wind-induced vibrations [J]. Computers and Structures, 1996, 59(2): 311―316.
[17]  Papageorgiou A V, Gantes C J. Equivalent uniform damping ratios for linear irregularly damped concrete/ steel mixed structures [J]. Soil Dynamics and Earthquake Engineering, 2011, 31(3): 418―430.
[18]  Clough R W, Mojtahedi S. Earthquake response analysis considering non‐proportional damping [J]. Earthquake Engineering and Structural Dynamics, 1976, 4(5): 489―496.
[19]  Cronin D L. Approximation for determining harmonically excited response of non-classically damped systems [J]. ASME Journal of Engineering for Industry, 1976, 1(5): 43―47.
[20]  Morzfeld M, Ma F, Ajavakom N. On the decoupling approximation in damped linear systems [J]. Journal of Vibration and Control, 2008, 14(12): 1869―1884.
[21]  桂国庆, 何玉敖. 非比例阻尼结构体系近似解耦分析中的误差研究[J]. 工程力学, 1994, 11(4): 40―45.
[22]  Gui Guoqing, He Yu’ao. Study on errors of approximate decoupling analysis for non-proportionally damped structural systems [J]. Engineering Mechanics, 1994, 11(4): 40―45. (in Chinese)
[23]  Clough R W, Penzien J. Dynamics of structures [M]. USA: Computers and Structures. Inc, 2003: 100―245.
[24]  Chopra A K. Dynamics of structures, 3/E [M]. USA: Pearson Education India, 2007: 334―345.
[25]  Ma F, Imam A, Morzfeld M. The decoupling of damped linear systems in oscillatory free vibration [J]. Journal of Sound and Vibration, 2009, 324(1): 408―428.
[26]  潘旦光. 地震反应分析中Rayleigh阻尼系数的优化解 [J]. 工程力学, 2013, 30(11): 15―20.
[27]  Pan Danguang. An optimization solution for rayleigh damping coefficients in seismic response analysis [J]. Engineering Mechanics, 2013, 30(11): 15―20. (in Chinese)
[28]  潘旦光, 楼梦麟. 层状土层随机地震反应分析的近似解法[J]. 工程力学, 2008, 25(3): 91―95.
[29]  Pan Danguang, Lou Menglin. An approach to solve random seismic response of layered soil [J]. Engineering Mechanics, 2008, 25(3): 91―95. (in Chinese)
[30]  PEER Ground Motion Data base. The Pacific Earthquake Engineering Research Center, Berkeley, USA [DB/OL]. http://ngawest2.berkeley.edu/, 2014.01.05.
[31]  American association of state highway, Guide specifications for seismic isolation design [S]. USA: Transportation Officials, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133