全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

变温条件下热结构的声疲劳寿命评估

DOI: 10.6052/j.issn.1000-4750.2014.03.0213, PP. 220-225

Keywords: 声疲劳,热结构,C/SiC,变温,温度依赖性

Full-Text   Cite this paper   Add to My Lib

Abstract:

为提高C/SiC热结构在热-声载荷下的疲劳寿命评估精度,分析了热结构声疲劳寿命的温度依赖性。基于频域疲劳评估方法,从温度变化改变结构动应力响应和温度与材料S-N曲线的对应关系两个方面,分析了变温条件下的结构声疲劳寿命评估。对C/SiC热防护壁板进行的数值仿真研究发现,随着温度的升高,加筋板结构的刚度降低,动应力响应峰值在整体上呈现左移且上移的趋势;在3个典型温度水平1100℃、1300℃和1500℃下,热防护材料C/SiC的疲劳性能随着温度的升高而降低。热-声两方面因素的共同作用,使得C/SiC加筋壁板在1300℃时危险点的寿命降为1100℃时的7.1%,而1500℃时声疲劳寿命降低到1300℃时的3.9%。计及和不计及温度变化的过程,在4000s内的疲劳损伤的计算结果相差约102倍。

References

[1]  Culler A J, McNamara J J. Impact of fluid- thermal-structural coupling on response prediction of hypersonic skin panels [J]. AIAA Journal, 2011, 49(11): 2393―2406.
[2]  黄小林, 沈惠申. 热环境下功能梯度材料板的自由振动和动力响应[J]. 工程力学, 2005, 22(3): 224―227. Huang Xiaolin, Shen Huishen. Free vibration and dynamic response of functionally graded plates in thermal environments [J]. Engineering Mechanics, 2005, 22(3): 224―227. (in Chinese).
[3]  姚熊亮, 叶曦, 王献忠. 热环境中功能梯度圆柱壳声辐射特性研究[J]. 工程力学, 2013, 30(6): 334―339. Yao Xiongliang, Ye Xi, Wang Xianzhong. The acoustic radiation characteristics of functionally graded cylindrical sehlls in thermal environment [J]. Engineering Mechanics, 2013, 30(6): 334―339. (in Chinese)
[4]  张立同. 纤维增韧碳化硅陶瓷复合材料: 模拟, 表征与设计[M]. 北京: 化学工业出版社, 2009: 93―98. Zhang Litong. Fiber-reinforced silicon carbide ceramic composites-modelling, Characterization and design [M]. Beijing: Chemical Industry Press, 2009: 93―98. (in Chinese)
[5]  Staehler J M, Mall S, Zawada L P. Frequency dependence of high-cycle fatigue behavior of CVI C/SiC at room temperature [J]. Composites Science and Technology, 2003, 63(15): 2121―2131.
[6]  Mall S, Engesser J M. Effects of frequency on fatigue behavior of CVI C/SiC at elevated temperature [J]. Composites Science and Technology, 2006, 66(7): 863―874.
[7]  刘持栋, 成来飞, 梅辉, 等. 2D C/SiC复合材料在1300℃水氧环境下的疲劳行为研究[J]. 无机材料学报, 2008, 23(4): 729―733. Liu Chidong, Cheng Laifei, Mei Hui, et al. Fatigue behavior of 2D C/SiC composites in water-vapor containing environment at 1300℃ [J]. Journal of Inorganic Materials, 2008, 23(4): 729―733. (in Chinese)
[8]  Aykan M, Çelik M. Vibration fatigue analysis and multi-axial effect in testing of aerospace structures [J]. Mechanical Systems and Signal Processing, 2009, 23(3): 897―907.
[9]  Han S H, An D G, Kwak S J, et al. Vibration fatigue analysis for multi-point spot-welded joints based on frequency response changes due to fatigue damage accumulation [J]. International Journal of Fatigue, 2013, 48: 170―177.
[10]  Wang Y. Spectral fatigue analysis of a ship structural detail-A practical case study [J]. International Journal of Fatigue, 2010, 32(2): 310―317.
[11]  Lee Y L, Pan J, Hathaway R, et al. Fatigue testing and analysis: Theory and practice [M]. Massachusetts, USA: Butterworth- Heinemann, Massachusetts, 2005: 386―394.
[12]  Turan Dirlik. Application of Computers in Fatigue Analysis [D]. Coventry, UK: University of Warwick, 1985.
[13]  Niesłony A, Růžička M, Papuga J, et al. Fatigue life prediction for broad-band multiaxial loading with various PSD curve shapes [J]. International Journal of Fatigue, 2012, 44: 74―88.
[14]  姚卫星. 结构疲劳寿命分析[M]. 北京: 国防工业出版社, 2003: 50―54. Yao Weixing. Fatigue life prediction of structures [M]. Beijing: National Defense Industry Press, 2003: 50―54. (in Chinese)
[15]  MIL-STD-810D, Environmental test methods and engineering guidelines [S]. Ohio, USA: Air Force Wright Aeronautical Laboratories, 1983.
[16]  Pichon T, Barreteau R, Soyris P, et al. CMC thermal protection system for future reusable launch vehicles: Generic shingle technological maturation and tests [J]. Acta Astronautica, 2009, 65(1): 165―176.
[17]  鲁芹, 胡龙飞, 罗晓光, 等. 高超声速飞行器陶瓷复合材料与热结构技术研究进展[J]. 硅酸盐学报, 2013, 41(2): 251―260. Lu Qin, Hu Longfei, Luo Xiaoguang, et al. Development of ceramic composite and hot structures for hypersonic vehicles [J]. Journal of the Chinese Ceramic Society, 2013, 41(2): 251―260. (in Chinese)
[18]  Blevins R D, Bofilios D, Holehouse I, et al. Thermo-vibro-acoustic loads and fatigue of hypersonic flight vehicle structure [R]. Wright-Patterson Air Force Base, Ohio, Goodrich (BF) Aerospace Chula Vista CA Aerostructures, USA, 2009.
[19]  吕建伟, 王强. 飞行器表面三维流场与固壁温度场的耦合分析[J]. 北京航空航天大学学报, 2009, 35(8): 938―941. Lü Jianwei, Wang Qiang. Coupled analysis on flow field-temperature distribution of aircraft-skin [J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(8): 938―941. (in Chinese)
[20]  吴振强, 程昊, 张伟, 等. 热环境对飞行器壁板结构动特性的影响[J]. 航空学报, 2013, 34(2): 334―342. Wu Zhenqiang. Cheng Hao, Zhang Wei, et al. Effects of thermal environment on dynamic properties of aerospace vehicle panel structures [J]. Acta Aeronoutica et Astronautica Sinica, 2013, 34(2): 334―342. (in Chinese)
[21]  Ibrahim H H, Yoo H H, Tawfik M, et al. Thermo-acoustic random response of temperature- dependent functionally graded material panels [J]. Computational Mechanics, 2010, 46(3): 377―386.
[22]  杨雄伟, 李跃明, 耿谦. 基于混合 FE-SEA 法的高温环境飞行器宽频声振特性分析[J]. 航空学报, 2011, 32(10): 1851―1859. Yang Xiongwei, Li Yueming, Geng Qian. Broadband vibro-acoustic response of aircraft in high temperature environment based on hybrid FE-SEA [J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10): 1851―1859. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133