全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

基于X-SBFEM的裂纹体非网格重剖分耦合模型研究

, PP. 15-21

Keywords: 线弹性断裂力学,扩展有限元法,比例边界有限元法,应力强度因子,耦合模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

扩展有限元法利用了非网格重剖分技术,但需要基于裂尖解析解构造复杂的插值基函数,计算精度受网格疏密和插值基函数等因素影响。比例边界有限元法则在求解无限域和裂尖奇异性问题优势明显,两者衔接于有限元法理论内,可建立一种结合二者优势的断裂耦合数值模型。该文从虚功原理出发,利用位移协调与力平衡机制,提出了一种断裂计算的新方法X-SBFEM,达到了扩展有限元模拟裂纹主体、比例边界有限元模拟裂尖的目的。在数值算例中,通过边裂纹和混合型裂纹的应力强度因子计算,并与理论解对比,验证了该方法的准确性和有效性。

References

[1]  茹忠亮, 朱传锐, 赵洪波. 裂纹扩展问题的改进XFEM算法[J]. 工程力学. 2012, 29(7): 12―16. Ru Zhongliang, Zhu Chuanrui, Zhao Hongbo. An improved algorithm of XFEM for the crack propagation problems [J]. Engineering Mechanics, 2012, 29(7): 12―16. (in Chinese)
[2]  Moes N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing [J]. International Journal for Numerical Methods in Engineering, 1999, 46: 131―150.
[3]  茹忠亮, 朱传锐, 赵洪波. 基于水平集算法的扩展有限元方法研究[J]. 工程力学, 2011, 28(7): 20―25. Ru Zhongliang, Zhu Chuanrui, Zhao Hongbo. Study on the extend finite element method based on level set algorithm [J]. Engineering Mechanics, 2011, 28(7): 20―25. (in Chinese)
[4]  张晓东,丁勇, 任旭春. 混凝土裂纹扩展过程模拟的扩展有限元法研究[J]. 工程力学, 2013, 30(7): 14―21. Zhang Xiaodong, Ding Yong, Ren Xuchun. Simulation of the concrete crack propagation process with the extend finite element method [J]. Engineering Mechanics, 2013, 30(7): 14―21. (in Chinese)
[5]  Song C M, Wolf J P. The scaled boundary finite-element method-alias consistent infinitesimal finite-element cell method-for elastodynamics [J]. Computer Methods in Applied Mechanics and Engineering, 1997: 147(34): 329―355.
[6]  Song C M. A super-element for crack analysis in the time domain [J]. International Journal for Numerical Methods in Engineering, 2004, 61(8): 1332―1357.
[7]  刘钧玉, 林皋, 胡志强. 裂纹面荷载作用下多裂纹应力强度因子计算[J]. 工程力学, 2011, 28(4): 7―12. Liu Junyu, Lin Gao, Hu Zhiqiang. The calculation of stress intensity factors of multiple cracks under surface tractions [J]. Engineering Mechanics, 2011, 28(4): 7―12. (in Chinese)
[8]  李建波, 陈建云, 林皋. 非网格重剖分模拟宏观裂纹体的扩展有限单元法(1: 基础理论)[J]. 计算力学学报, 2006, 23(2): 207―212. Li Jianbo, Chen Jianyun, Lin Gao. Extended finite element method for modeling cracks without remeshing (1: Basic theory) [J]. Chinese Journal of Computational Mechanics, 2006, 23(2): 207―212. (in Chinese)
[9]  李建波, 陈建云, 林皋. 非网格重剖分模拟宏观裂纹体的扩展有限单元法(2: 数值实现)[J]. 计算力学学报, 2006, 23(3): 317―323. Li Jianbo, Chen Jianyun, Lin Gao. Extended finite element method for modeling cracks without remeshing (2: Numerical realization) [J]. Chinese Journal of Computational Mechanics, 2006, 23(3): 317―323. (in Chinese)
[10]  Deeks A J, Wolf J P. A virtual work derivation of the scaled boundary finite-element method for elastostatics [J]. Computational Mechanics, 2002, 28(6): 489―504.
[11]  Yang Z J. Fully automatic modelling of mixed-mode crack propagation using scaled boundary finite element method [J]. Engineering Fracture Mechanics, 2006, 73(12): 1711―1731.
[12]  中国航空研究院. 应力强度因子手册[M]. 北京: 科学出版社, 1993: 251―252. Chinese Aeronautical Establishment. Stress intensity factor handbook [M]. Beijing: Science Press, 1993: 251―252. (in Chinese)
[13]  范天佑. 断裂理论基础[M]. 北京: 科学出版社, 2003: 92―93. Fan Tianyou. Theory foundation of fracture [M]. Beijing: Science Press, 2003: 92―93. (in Chinese)
[14]  Moes N, Belytschko T. Extended finite element method for cohesive crack growth [J]. Engineering Fracture Mechanics, 2002, 69: 813―833.
[15]  Yang Z J, Deeks A J. Fully automatic modelling of cohesive crack growth using a finite element-scaled boundary finite element method [J]. Engineering Fracture Mechanics, 2007, 74: 2547―2573.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133