全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

求解双材料界面裂纹应力强度因子的扩展有限元法

Keywords: 扩展有限元法,双材料,界面裂纹,相互作用积分,应力强度因子

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于双材料界面裂纹尖端的基本解,构造扩展有限元法(eXtendedFiniteElementMethods,XFEM)裂尖单元结点的改进函数。有限元网格剖分不遵从材料界面,考虑3种类型的结点改进函数:弱不连续改进函数、Heaviside改进函数和裂尖改进函数,建立XFEM的位移模式,给出计算双材料界面裂纹应力强度因子(StressIntensityFactors,SIFs)的相互作用积分方法。数值结果表明:XFEM无需遵从材料界面剖分网格,该文的方法能够准确评价双材料界面裂纹尖端的SIFs。

References

[1]  沈观林, 胡更开. 复合材料力学[M]. 北京: 清华大学出版社, 2006: 3―5.
[2]  Shen Guanlin, Hu Gengkai. Mechanics of composites [M]. Beijing: Tsinghua University Press, 2006: 3―5. (in Chinese)
[3]  Du C B, Jiang S Y, Qin W, et al. Numerical analysis of concrete composites at mesoscale based on 3D reconstruction technology of X-ray CT images [J]. CMES-Computer Modeling in Engineering & Sciences, 2011, 81(3): 229―247.
[4]  Du C B, Sun L G. Numerical simulation of aggregate shapes of two dimensional concrete and its application [J]. International Journal of Aerospace Engineering, 2007, 20(3): 172―178.
[5]  许金泉. 界面力学[M]. 北京: 科学出版社, 2006: 94―95.
[6]  Xu Jinquan. Interface mechanics [M]. Beijing: Science Press, 2006: 94―95. (in Chinese)
[7]  张明, 姚振汉, 杜庆华, 等. 双材料界面裂纹应力强度因子的边界元分析[J]. 应用力学学报, 1999, 16(1): 21―26.
[8]  Zhang Ming, Yao Zhenhan, Du Qinghua, et al. Boundary element analysis of stress intensity factors of bimaterial interface crack [J]. Chinese Journal of Applied Mechanics, 1999, 16(1): 21―26. (in Chinese)
[9]  黄干云, 汪越胜, 余寿文. 功能梯度材料的平面断裂力学分析[J]. 力学学报, 2005, 37(1): 1―8.
[10]  Huang Ganyun, Wang Yuesheng, Yu Shouwen. A new multi-layered model for in-plane fracture analysis of functionally graded materials (FGMS) [J]. Acta Mechanica Sinica, 2005, 37(1): 1―8. (in Chinese)
[11]  Yu H J, Wu L Z, Guo L C, et al. Interaction integral method for the interfacial fracture problems of two nonhomogeneous materials [J]. Mechanics of Materials, 2010, 42: 435―450.
[12]  王志勇, 马力, 吴林志, 等. 基于扩展有限元法的颗粒增强复合材料静态及动态断裂行为研究[J]. 固体力学学报, 2011, 32(6): 566―573.
[13]  Wang Zhiyong, Ma Li, Wu Linzhi, et al. Investigation of static and dynamic fracture behavior of particle-reinforced composite materials by the extended finite element method [J]. Chinese Journal of Solid Mechanics, 2011, 32(6): 566―573. (in Chinese)
[14]  Pant M, Singh I V, Mishra B K. Evaluation of mixed mode stress intensity factors for interface cracks using EFGM [J]. Applied Mathematical Modelling, 2011, 35: 3443―3459.
[15]  申连喜, 余寿文. 界面裂纹问题中的权函数方法[J]. 固体力学学报, 1995, 16(2): 171―174.
[16]  Shen Lianxi, Yu Shouwen. The weight function method for determining interface crack tip stress intensity factors [J]. Acta Mechanica Solida Sinica, 1995, 16(2): 171―174. (in Chinese)
[17]  马开平, 柳春图. 应用半权函数法计算界面裂纹的应力强度因子[J]. 应用力学学报, 2004, 21(1): 44―49.
[18]  Ma Kaiping, Liu Chuntu. Semi-weight function method on computation of stress intensity factors in dissimilar materials [J]. Chinese Journal of Applied Mechanics, 2004, 21(1): 44―49. (in Chinese)
[19]  茹忠亮, 朱传锐, 赵洪波. 裂纹扩展问题的改进XFEM 算法[J]. 工程力学, 2012, 29(7): 12―23.
[20]  Ru Zhongliang, Zhu Chuanrui, Zhao Hongbo. An improved algorithm of XFEM for the crack propagation problems [J]. Engineering Mechanics, 2012, 29(7): 12―23. (in Chinese)
[21]  张晓东, 丁勇, 任旭春. 混凝土裂纹扩展过程模拟的扩展有限元法研究[J]. 工程力学, 2013, 30(7): 14―27.
[22]  Zhang Xiaodong, Ding Yong, Ren Xuchun. Simulation of the concrete crack propagation process with the extended finite element method [J]. Engineering Mechanics, 2013, 30(7): 14―27. (in Chinese)
[23]  Nagashima T, Momoto Y, Tani S. Stress intensity factor analysis of interface cracks using X-FEM [J]. International Journal for Numerical Methods in Engineering, 2003, 56: 1151―1173.
[24]  Sukumar N, Huang Z Y, Prévost J H, et al. Partition of unity enrichment for bimaterial interface cracks [J]. International Journal for Numerical Methods in Engineering, 2004, 59: 1075―1102.
[25]  Xia X Z, Zhang Q, Wang H, et al. The numerical simulation of interface crack propagation without re-meshing [J]. Science in China Series E: Technological Sciences, 2011, 54(7): 1923―1929.
[26]  庄茁, 柳占立, 成斌斌, 等. 扩展有限单元法[M]. 北京: 清华大学出版社, 2012: 92―111.
[27]  Zhuang Zhuo, Liu Zhanli, Cheng Binbin, et al. Extended finite element method [M]. Beijing: Tsinghua University Press, 2012: 92―111. (in Chinese)
[28]  Mohamnadi S. XFEM fracure analysis of composites [M]. John Wiley & Sons, Ltd., United Kingdom, 2012: 261―302.
[29]  Rice J R. Elastic fracture mechanics concepts for interfacial cracks [J]. Journal of Applied Mechanics, 1988, 55: 98―103.
[30]  Suo Z. Mechanics of interface fracture [D]. Cambridge, MA, U.S.A.: Harvard University, 1989.
[31]  Moës N, Cloirec M, Cartraud P, et al. A computational approach to handle complex microstructure geometries [J]. Computer Methods in Applied Mechanics & Engineering, 2003, 192(28/29/30): 3163―3177.
[32]  Yau J F, Wang S S, Corten H T. A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity [J]. Journal of Applied Mechanics, 1980, 47: 335―341.
[33]  Miyazaki N, Ikeda T, Soda T, et al. Stress intensity factor analysis of interface crack using boundary element method (application of virtual crack extension method) [J]. JSME International Journal Series A: Mechanics and Material Engineering, 1993, 36(1): 36―42.
[34]  于红军. 含复杂界面非均匀材料断裂力学研究[D]. 哈尔滨: 哈尔滨工业大学, 2010: 60―61.
[35]  Yu Hongjun. Investigations on fracture mechanics of nonhomogeneous materials with complex interfaces [D]. Harbin: Harbin Institute of Technology, 2010: 60―61. (in Chinese)
[36]  Rice J R, Sih G C. Plane problems of cracks in dissimilar media [J]. Journal of Applied Mechanics, 1965, 32: 418―423.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133