Hucker M, Bonda I, Bleay S, Haq S. Investigation into the behaviour of hollow glass fiber bundles under compressive loading [J]. Composites: Part A, 2003, 34(11): 1045―1052.
[2]
徐耀玲, 沈艳芝, 刘新桥. 双周期分布圆环形截面夹杂反平面问题的解析方法[J]. 计算力学学报, 2010, 27(1): 157―161. Xu Yaoling, Shen Yanzhi, Liu Xinqiao. An analytical method for doubly periodic arrays of annular cross-section inclusions under antiplane shear [J]. Chinese Journal of Computational Mechanics, 2010, 27(1): 157―161. (in Chinese)
[3]
Bayat M, Aghdam M M. A micromechanics based analysis of hollow fiber composites using DQEM [J]. Composites: Part B, 2012, 43(8): 2921―2929.
[4]
Brei D, Cannon B J. Piezoceramic hollow fiber active composites [J]. Composites Science and Technology, 2004, 64(2): 245―261.
[5]
Beckert W, Kreher W, Braue W, Ante M. Effective properties of composites utilizing fibres with a piezoelectric coating [J]. Journal of the European Ceramic Society, 2001, 21(10/11): 1455―1458.
[6]
Dai Q L, Ng K. Investigation of electromechanical properties of piezoelectric structural fiber composites with micromechanics analysis and finite element modeling [J]. Mechanics of Materials, 2012, 53: 29―46.
[7]
Dinzart F, Sabar H. Electroelastic behabior of piezoelectric composites with coated reinforcements: micromechanical approach and applications [J]. International Journal of Solids and Structures, 2009, 46(20): 3556―3564.
[8]
Lin Y, Sodano H A. Concept and model of a piezoelectric structural fiber for multifunctional composites [J]. Composites Science and Technology, 2008, 68(7/8): 1911―1918.
[9]
Lin Y, Sodano H A. Electromechanical characterization of a active structural fiber lamina for multifucntional composites [J]. Composites Science and Technology, 2009, 69(11/12):1825―1830.
[10]
Xia Z H, Zhang Y F, Ellyin F. A unified periodical boundary conditions for representative volume elements of composites and applications [J]. International Journal of Solids and Structures, 2003, 40(8): 1907―1721.
[11]
Odegard G M. Constitutive modeling of piezoelectric polymer composites [J]. Acta Materialia, 2004, 52(18): 5315―5330.
[12]
Pettermann H E, Suresh S. A comprehensive unit cell model: A study of coupled effects in piezoelectric 1-3 composites [J]. International Journal of Solids and Structures, 2000, 37(39): 5447―5464.
[13]
Berger H, Kari S, Gabbert U, Rodriguez-Ramos R, Bravo-Castillero J, Guinovart-Diaz R. Calculation of effective coefficients for piezoelectric fiber composites based on a general numerical homogenization tech- nique [J]. Composite Structures, 2005, 71(3/4): 397―400.
[14]
Xu Y L, Du S S, Xiao J H, Zhao Q X. Evaluation of the effective elastic properties of long fiber reinforced composites with interphases [J]. Computational Materials Science, 2012, 61: 34―41.
[15]
Guinovart-Díaz R, Yan P, Rodríguez-Ramos R, López-Realpozo J C, Jiang C P, Bravo-Castillero J, Sabina F J. Effective properties of piezoelectric composites with parallelogram periodic cells [J]. International Journal of Engineering Science, 2012, 53: 58―66.
[16]
Li Y, Zheng H, Long S G, Wu L L. Effects of the piezoelectric phase’s geometric properties on effective coefficients of 1-3 piezoelectric composites [J]. Computational Materials Science, 2011, 50(7): 2135―2141.
[17]
Berger H, Kari S, Gabbert U, Rodríguez-Ramos R, Bravo-Castillero J, Guinovart-Díaz R. A comprehensive numerical homogenization technique for calculating effective coefficients of uniaxial piezoelectric fibre composites [J]. Materials Science and Engineering A, 2005, 412(1/2): 53―60.