全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

铰接板机构运动分析的简便协调方程

, PP. 126-133

Keywords: 铰接板机构,运动分析,协调方程,运动路径,施工模拟

Full-Text   Cite this paper   Add to My Lib

Abstract:

一些新型空间结构的施工分析模型可以简化为铰接板机构,如Pantadome。利用三角形形状稳定性特点,将三条边长变化为零来表征三角形板单元的刚体位移。进而基于杆单元的协调方程,建立了一个简便的顶点铰接三角形板单元的机构位移协调方程,且给出了1阶和2阶协调矩阵。将四边形板单元划分为2个三角形板单元,通过引入单元四顶点共面条件,推导出平面四边形板单元的协调矩阵。理论上,利用该思路可构建任意平面多边形板单元的协调矩阵。针对该简便协调方程,进一步给出了求解铰接板机构运动路径的计算策略。对1个顶升施工的Pantadome和1个顶推施工的双坡网架的成形过程进行了数值模拟,结果表明该方法对于此类铰接板机构的运动路径分析有很高的精度。

References

[1]  Pellegrino S, Calladine C R. Matrix analysis of statically and kinematically indeterminate frameworks [J]. International Journal of Solids and Structures, 1982, 22: 409―428.
[2]  Pellegrino S. Analysis of prestressed mechanisms [J]. International Journal of Solids and Structures, 1990, 26: 1329―1350.
[3]  包红泽, 邓华. 铰接杆系机构稳定性条件分析[J]. 浙江大学学报(工学版), 2006, 40(1): 78―84.
[4]  Bao Hongze, Deng Hua. Analysis of stability conditions for pin-bar mechanisms [J]. Journal of Zhejiang University (Engineering Science), 2006, 40(1): 78―84. (in Chinese)
[5]  袁行飞, 董石麟. 索穹顶结构施工控制反分析[J]. 建筑结构学报, 2001, 22(2): 75―79.
[6]  Yuan Xingfei, Dong Shilin. Inverse analysis of construction process of cable dome [J]. Journal of Building Structures, 2001, 22(2): 75―79. (in Chinese)
[7]  Kawaguchi M. Engineering aspects of space frames [C]// Current and emerging technologies of shell and spatial structures, In: Proceedings of the International Association of Space Structures Colloquium, Madrid, 1997: 51―62.
[8]  沈金, 楼俊晖, 邓华. 杆系机构的可动性和运动分岔分析[J]. 浙江大学学报(工学版), 2009, 43(6): 1086―1089.
[9]  Shen Jin, Lou Junhui, Deng Hua. Movability and kinematic bifurcation analysis for pin-bar mechanisms [J]. Journal of Zhejiang University (Engineering Science), 2009, 43(6): 1086―1089. (in Chinese)
[10]  Kumar P, Pellegrino S. Computation of kinematic paths and bifurcation points [J]. International Journal of Solids and Structures, 2000, 37(46): 7003―7026.
[11]  邓华, 楼俊晖, 徐静. 铰接杆系机构的运动路径及其极值点跟踪-一种几何学方法[J]. 工程力学, 2009, 26(10): 30―36.
[12]  Deng Hua, Lou Junhui, Xu Jing. Tracing kinematic paths and limit points of pin-bar mechanisms by a geometrical approach [J]. Engineering Mechanics, 2009, 26(10): 30―36. (in Chinese)
[13]  徐静. 铰接杆系机构的运动形态研究[D]. 杭州: 浙江大学, 2007.
[14]  Xu Jing. Studies on the kinematic morphology of pin-bar mechanisms [D]. Hangzhou: Zhejiang University, 2007. (in Chinese)
[15]  蒋本卫, 邓华, 伍晓顺. 平面连杆机构的提升形态及稳定性分析[J]. 土木工程学报, 2010, 43(1): 13―21.
[16]  Jiang Benwei, Deng Hua, Wu Xiaoshun. Kinematic state and stability analysis for planar linkages during lifting erection [J]. China Civil Engineering Journal, 2010, 43(1): 13―21. (in Chinese)
[17]  Tarnai T, Szabo J. On the exact equation of extensional, kinematically indeterminate assemblies [J]. Computers and Structures, 2000, 75: 145―155.
[18]  徐荣桥. 结构分析的有限元法与MATLAB程序设计[M]. 北京: 人民交通出版社, 2006: 87―90.
[19]  Xu Rongqiao. Finite element method in structural analysis and MATLAB programming [M]. Beijing: China Communications Press, 2006: 87―90. (in Chinese)
[20]  同济大学数学系. 高等数学(下册) [M]. 第六版. 北京:高等教育出版社, 2007: 20―22.
[21]  Department of Mathematics, Tongji University. Advanced Mathematics (Vol. 2) [M]. 6th ed. Beijing: Higher Education Press, 2007: 20―22. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133