Chawla N, Murphy T F, Narasimhan K S. Axial fatigue behavior of binder-treated versus diffusion alloyed powder metallurgy steels [J]. Materials Science and Engineering, 2001, A308: 180―188.
[2]
Abdoos H, Khorsand H, Shahani A R. Fatigue behavior of diffusion bonded powder metallurgy steel with heterogeneous microstructure [J]. Materials and Design, 2009, 30: 1026―1031.
[3]
Li Shuxin, Xuan Fuzhen, Tu Shantung. Fatigue damage of stainless steel diffusion-bonded joints [J]. Materials Science and Engineering, 2008, A480: 125―129.
[4]
郭伟, 赵熹华, 宋敏霞. 扩散连接界面理论的现状与发展[J]. 航天制造技术, 2004(5): 36―39. Guo Wei, Zhao Xihua, Song Minxiao. Advance and development tendency of diffusion bonding interface theory [J]. Aerospace Manufacturing Technology, 2004(5): 36―39. (in Chinese)
[5]
Derby B, Wallach E R. Theoretical model for diffusion bonding [J]. Metal Science, 1982, 16(1): 49―56.
[6]
李志强, 郭和平. 超塑成形/扩散连接技术的应用与发展现状[J]. 航空制造技术, 2010(8): 32―35. Li Zhiqiang, Guo Heping. Application progress and development tendency of superplastic forming/diffusion bonding technology [J]. Aeronautical Manufacturing Technology, 2010(8): 32―35. (in Chinese)
[7]
Frankin W L, Waitz C R. Built up low-cost advanced titanium structures [R]. Seattle: AIAA, 1980.
[8]
Kaibyshev O A. Advanced superplastic forming and diffusion bonding of titanium alloy [J]. Materials Science and Technology, 2006, 22(3): 343―348.
[9]
He P, Feng J C, Zhang B G. Microstructure and strength of diffusion-bonded joints of TiAl base alloy to steel [J]. Materials Characterization, 2002, 48: 401―406.
[10]
吴为, 张凯锋, 龚泰宾. TB2钛合金扩散焊接头强度的影响因素[J]. 宇航材料工艺, 2002(2): 55―59. Wu Wei, Zhang Kaifeng, Gong Taibin. Influencing factors of strength of diffusion bonding TB2 alloy Joint [J]. Aerospace Materials & Technology, 2002(2): 55―59. (in Chinese)
[11]
Tuppena S J, Bachea M R, Voice W E. A fatigue assessment of dissimilar titanium alloy diffusion bonds [J]. International Journal of Fatigue, 2005, 27: 651―658.
[12]
Antonio A M, da Silva a, Jorge F, dos Santos a, Telmo R Strohaecker. An investigation of the fracture behaviour of diffusion-bonded Ti6Al4V/TiC/10p [J]. Composites Science and Technology, 2006, 66: 2063―2068.
[13]
王向明, 刘文挺. 钛合金结构设计与应用[J]. 北京: 国防工业出版社, 2010. Wang Xiangming, Liu Wenting. The design and application of titanium alloy structures [J]. Beijing: National Defense Press, 2010. (in Chinese)
[14]
Takahashi Y, Inone K. Recent void shrinkage models and their applicability to diffusion bonding [J]. Mater Sci Techol, 1992, 8(11): 953―964.
[15]
Cao J, Feng J C, Li Z R. Microstructure and fracture properties of reaction-assisted diffusion bonding of TiAl intermetallic with Al/Ni multilayer foils [J]. Journal of Alloys and Compounds, 2008, 66( ): 363―367.
[16]
吴诗淳, 向毅斌. 预测钛合金超塑成形-扩散连接(SPF/DB)界面层的断裂韧度[J]. 机械工程学报, 2002, 38(11): 84―87. Wu Shichun, Xiang Yibin. Prediction of fracture toughness of superplastic formed/diffusion bonded interfaces for titanium alloys [J]. Chinese Journal of Mechanical Engineering, 2002, 38(11): 84―87. (in Chinese)
[17]
周克印, 徐来, 林兆荣, 等. TC4钛板扩散连接后的疲劳断裂特性[J]. 机械强度, 1998, 20(2): 112―115. Zhou Keyin, Xu Lai, Lin Zhaorong, et al. Fatigue and fracture characteristic of titanium alloy boards bonded by diffusion [J]. Journal of Mechanical Strength, 1998, 20(2): 112―115. (in Chinese)
[18]
杨洪源. 冷挤压强化与钛合金超塑成形/扩散连接层合结构疲劳特性研究[R]. 北京: 北京航空航天大学, 2009. Yang Hongyuan. Research on fatigue characteristic of cold-worked and titanium super plastical formed and diffusion bonded laminated structure [R]. Beijing: Beihang University, 2009. (in Chinese)
[19]
Provan J W. Probabilistic fracture mechanics and reliability [M]. Netherlands: Martinus Nijhoff Publishers, 1987: 226.