贾鑫, 黄正祥, 祖旭东, 顾晓辉. 聚能装药垂直侵彻橡胶复合装甲的变形研究[J]. 工程力学, 2013, 30(2): 451―457. Jia Xin, Huang Zhengxiang, Zu Xudong, Gu Xiaohui. Research on deformation of rubber composite armor against shaped charge vertical penetration [J]. Engineering Mechanics, 2013, 30(2): 451―457. (in Chinese)
[2]
宋殿义, 刘飞, 蒋志刚. 刚性尖头弹侵彻圆柱形金属厚靶分析模型[J]. 工程力学, 2013, 30(1): 31―36. Song Dianyi, Liu Fei, Jiang Zhigang. An analytical model for penetration into cylindrical metallic thick target by rigid sharp-nosed projectiles [J]. Engineering Mechanics, 2013, 30(1): 31―36. (in Chinese)
[3]
Espinosa H D, Dwivedi S, Zavattieri P D, et a1. A numerical investigation of penetration in multilayered material/structure system [J]. International Journal of Solids and Structures, 1998, 35(14): 2975―3001.
[4]
Lee M, Yoo Y H. Analysis of ceramic/metal armor systems [J]. International Journal of Impact Engineering, 2001, 25(5): 819―829.
[5]
Fawaz Z, Zheng W, Behdinan K. Numerical simulation of normal and oblique ballistic impact on ceramic composite armors [J]. Composite Structure, 2004, 63(2): 387―395.
[6]
Holmquist T J, Johnson G R. Modeling pre-stressed ceramic and its effect on ballistic performance [J]. International Journal of Impact Engineering, 2005, 31(2): 113―127.
[7]
李平. 陶瓷材料的动态力学响应及其抗长杆弹侵彻机理[D]. 北京: 北京理工大学, 2002. Li Ping. Dynamic responseof ceramic and mechanism against long rod penetrators [D]. Beijing: Beijing Institute of Technology, 2002. (in Chinese)
[8]
张晓晴, 杨桂通, 黄小清. 弹体侵彻陶瓷/金属复合靶板问题的研究[J]. 工程力学, 2006, 23(4): 155―159. Zhang Xiaoqing, Yang Guitong, Huang Xiaoqing. Study on ceramic/metal armor penetrated by projectile [J]. Engineering Mechanics, 2006, 23(4): 155―159. (in Chinese)
[9]
韩永要, 赵国志, 方清, 苟瑞君. 动能弹侵彻多层陶瓷靶板数值模拟研究[J]. 工程力学, 2006, 23(8): 182―186. Han Yongyao, Zhao Guozhi, Fang Qing, Gou Ruijun. Numerical simulation of keprojectile penetration into multilayered ceramics [J]. Engineering Mechanics, 2006, 23(8): 182―186. (in Chinese)
[10]
Ning J G, Ren H L, Guo T T, Li P. Dynamic response of alumina ceramics impacted by long tungsten projectile [J]. International Journal of Impact Engineering, 2013, 62: 60―74.
[11]
Ma T B, Wang C, Ning J G. Multi-material eulerian formulations and hydrocode for the simulation of explosions [J]. CMES-Computer Modeling in Engineering & Sciences, 2008, 33(2): 155―178.
[12]
Ren H L, Ma T B, Yao X H. Numerical studies of penetration problems by an improved particle method [J]. Science China-Physics Mechanics & Astronomy, 2012, 55(12): 2273―2283.
[13]
Konstantinov A B, Orszag S A. Extended lagrangian pariticle-in-cell code for inhomogeneous compressible flows [J]. Journal of Scientific Computing, 1995, 10(2): 191―231.
[14]
Johnson G R, Holmquist T J. An improved computational constitutive model for brittle materials [C]// Schmidt S C, Shaner J W, et al. High Pressure Science and Technology. New York: AIP Press, 1994, 309(2): 981―984.
[15]
Ren H L, Shu X F, Li P. Numerical and experimental investigation of the fracture behavior of shock loaded alumina [J]. Science China-Physics Mechanics & Astronomy, 2010, 53(2): 244―252.