全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

输流管道含有内共振的横向受迫振动研究

DOI: 10.6052/j.issn.1000-4750.2013.10.0983, PP. 185-190

Keywords: 输流管道,非线性振动,内共振,外周期激励,多元L-P法

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用多元L-P法研究外部周期激励下两端铰支输流管道含有内共振的非线性受迫振动问题。对于外激励作用下的流固耦合系统,当第二阶固有频率约为第一阶值的3倍,并且激励频率接近系统固有频率时,系统会发生含有强烈内部共振的主共振。利用多元L-P法求解这种振动响应,并详细分析振动中前两个模态的运动及外激励幅值对内共振的影响。数值算例揭示了系统由于内共振而发生的更加丰富而复杂的动力学行为,并且表明,随着激励幅值的增大,部分内共振的发生趋势将降低并最终消失。研究结果同时证明了多元L-P法在研究非线性动力学方面是便捷而高效的。

References

[1]  Wang L, Dai H L, Qian Q. Dynamics of simply supported fluid-conveying pipes with geometric imperfections [J]. Journal of Fluids and Structures, 2012, 29: 97―106.
[2]  包日东, 闻邦椿. 地震载荷作用下液化土中输流管道动态响应研究[J]. 工程力学, 2008, 25(6): 170―175. Bao Ridong, Wen Bangchun. Study of seismic response for pipeline conveying fluid in liquefaction soil [J]. Engineering Mechanics, 2008, 25(6): 170―175. (in Chinese)
[3]  梁峰, 金基铎, 杨晓东, 等. 弹性地基上输流管道的静态和动态稳定性研究[J]. 工程力学, 2010, 27(11): 166―171. Liang Feng, Jin Jiduo, Yang Xiaodong, et al. Static and dynamic stabilities of fluid pipes on elastic foundation [J]. Engineering Mechanics, 2010, 27(11): 166―171. (in Chinese)
[4]  Wang L H, Zhao Y Y. Nonlinear interactions and chaotic dynamics of suspended cables with three-to-one internal resonances [J]. International Journal of Solids and Structures, 2006, 43(25/26): 7800―7819.
[5]  Dwivedy S K, Kar R C. Simultaneous combination and 1:3:5 internal resonances in a parametrically excited beam-mass system [J]. International Journal of Nonlinear Mechanics, 2003, 38(4): 585―596.
[6]  Ribeiro P, Petyt M. Non-linear free vibration of isotropic plates with internal resonance [J]. International Journal of Nonlinear Mechanics, 2000, 35(2): 263―278.
[7]  Thomas O, Touzé C, Chaigne A. Non-linear vibrations of free-edge thin spherical shells: modal interaction rules and 1:1:2 internal resonance [J]. International Journal of Solids and Structures, 2005, 42(11/12): 3339―3373.
[8]  Xu J, Yang Q B. Flow-induced internal resonances and mode exchange in horizontal cantilevered pipe conveying fluid(I) [J]. Applied Mathematics and Mechanics (English Edition), 2006, 27(7): 935―941.
[9]  Xu J, Yang Q B. Flow-induced internal resonances and mode exchange in horizontal cantilevered pipe conveying fluid(II) [J]. Applied Mathematics and Mechanics (English Edition), 2006, 27(7): 943―951.
[10]  Panda L N, Kar R C. Nonlinear dynamics of a pipe conveying pulsating fluid with parametric and internal resonances [J]. Nonlinear Dynamics, 2007, 49(1/2): 9―30.
[11]  Panda L N, Kar R C. Nonlinear dynamics of a pipe conveying pulsating fluid with combination, principal parametric and internal resonances [J]. Journal of Sound and Vibration, 2008, 309(3/4/5): 375―406.
[12]  Lau S L, Cheung Y K, Chen S H. An alternative perturbation procedure of multiple scale for nonlinear dynamics systems [J]. ASME Journal of Applied Mechanics, 1989, 56(3): 667―675.
[13]  Chen S H, Cheung Y K, Lau S L. On the internal resonance of multi-degree-of-freedom systems with cubic nonlinearity [J]. Journal of Sound and Vibration, 1989, 128(1): 13―24.
[14]  Jin J D, Song Z Y. Parametric resonances of supported pipes conveying pulsating fluid [J]. Journal of Fluids and Structures, 2005, 20(6): 763―783.
[15]  Namachchivaya N S. Non-linear dynamics of supported pipe conveying pulsating fluid. 1. Subharmonic resonance [J]. International Journal of Nonlinear Mechanics, 1989, 24(3): 185―196.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133