全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
工程力学  2015 

基于Hooke-Jeeves算法的挠性粘接件的高效内聚反演分析

DOI: 10.6052/j.issn.1000-4750.2013.10.0942, PP. 1-7

Keywords: 反演分析,粘接界面,Hooke-Jeeves优化算法,内聚力模型,断裂能

Full-Text   Cite this paper   Add to My Lib

Abstract:

该文发展了一种标准试验与直接搜索算法相结合的反演分析方法,用于挠性粘接件的界面内聚力模型的参数获取。实验部分中通过单轴拉伸实验和双悬臂夹层梁实验来获取粘接强度和断裂能,内聚能采用了有效裂纹长度的概念来修正裂纹尖端塑性变形的影响。反演分析是以实验值为初始值,采用Hooke-Jeeves优化算法来实施的。整个反演分析过程是通过自动执行的程序来完成,程序包含Hooke-Jeeves优化算法、结果数据库、有限元软件的调用和目标函数的构建四大模块构成。通过推进剂/绝热层粘接试样来验证了反演分析方法的准确与高效性,结果表明该方法相比基于全局优化算法的反演分析方法具有更高的计算效率。

References

[1]  Barenblatt G. The mathematical theory of equilibrium cracks in brittle fracture [J]. Advances in Applied Mechanics, 1962, 7(1): 55―129.
[2]  Dugdale D S. Yielding of steel sheets containing slits [J]. Journal of the Mechanics and Physics of Solids, 1960, 8(2): 100―104.
[3]  赵海峰. 反分析确定金属薄膜与陶瓷间界面的力学性能参数[J]. 工程力学, 2008, 25(10): 80―85. Zhao Haifeng. Inverse analysis to determine interfacial properties between metal film and ceramic substrate with an adhesive layer [J]. Engineering Mechanics, 2008, 25(10): 80―85. (in Chinese)
[4]  Wang J, Kang Y, Qin Q, et al. Identification of time- dependent interfacial mechanical properties of adhesive by hybrid/inverse method [J]. Computational Materials Science, 2008, 43(4): 1160―1164.
[5]  Gain A L, Carroll J, Paulino G H, et al. A hybrid experimental/numerical technique to extract cohesive fracture properties for mode-I fracture of quasi-brittle materials [J]. International Journal of Fracture, 2011, 169(2): 113―131.
[6]  Shen B, Paulino G. Direct extraction of cohesive fracture properties from digital image correlation: a hybrid inverse technique [J]. Experimental Mechanics, 2011, 51(2): 143―163.
[7]  Zhou Q C, Ju Y T, Wei Z, et al. Cohesive zone modeling of propellant and insulation interface debonding [J]. The Journal of Adhesion, 2014, 90(3): 230―251.
[8]  ISO 15024: 2001, Fibre-reinforced plastic composites- Determination of mode I interlaminar fracture toughness, G Ic , for unidirectional reinforced materials [S]. London: British Standard Institute, 2002.
[9]  周清春, 鞠玉涛, 韦震, 等. HTPB推进剂/衬层脱粘的断裂机理与断裂能获取研究[J]. 兵工学报, 2014, 35(7): 990―995. Zhou Qingchun, Ju Yutao, Wei Zhen, et al. Investigation of the fracture mechanism and fracture energy of HTPB propellant/liner interface debonding [J]. Acta Armamentarii, 2014, 35(7): 990―995. (in Chinese)
[10]  Hooke R, Jeeves T A. “Direct Search” solution of numerical and statistical problems [J]. Journal of the ACM (JACM), 1961, 8(2): 212―229.
[11]  陈宝林. 最优化理论和算法[M]. 北京: 清华大学出版社, 1989: 397―403. Cheng Baoling. Optimization Theory and Algorithms [M]. Beijing: Tsinghua University Press, 1989: 397―403. (in Chinese)
[12]  Bo H, Yutao J, Changsheng Z. Simulation of crack propagation in HTPB propellant using cohesive zone model [J]. Engineering Failure Analysis, 2012, 26: 304―317.
[13]  Van den Bosch M, Schreurs P, Geers M. An improved description of the exponential Xu and Needleman cohesive zone law for mixed-mode decohesion [J]. Engineering Fracture Mechanics, 2006, 73(9): 1220―1234.
[14]  曲杰, 金泉林, 徐秉业. 超塑性本构模型材料参数识别方法研究[J]. 工程力学, 2004, 21(4): 17―21. Qu Jie, Jin Quanlin, Xu Bingye. Material parameter identification of superplastic constitutive relation [J]. Engineering Mechanics, 2004, 21(4): 17―21. (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133