全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于数据融合的浅层地下水提取技术研究

DOI: 10.6046/gtzyyg.2010.03.23, PP. 114-119

Keywords: ?Envisat-1,ASAR,Landsat-7,ETM,数据融合,浅层地下水

Full-Text   Cite this paper   Add to My Lib

Abstract:

为提高浅层地下水遥感探测的准确性和效率,开辟遥感找水新思路,首次将空间分辨率为30m的Landsat-7ETM多光谱数据和空间分辨率为150m(WideSwath模式)的Envisat-1ASAR先进合成孔径雷达数据进行了融合,并利用基于主成分变换(PCA)和小波变换(WT)的融合算法成功地找到了浅层地下水信息异常带。通过实地调查和物探、钻探验证,I、II、III级找水靶区的富水性情况与预测结果基本一致,并在上述靶区找到了丰富的浅层地下水,证实了该方法的可行性和实用性,可为今后地下水快速勘察提供新的技术手段。?

References

[1]  [11]Sharma R K,Ixen T K,Pavel M. Probabilistic Image Sensor Fusion [J]. Advances in Neural Information Processing Systems,1999(11):203-207.
[2]  [1]Li X B,Shi P J. Research on Regulation of NDVI Change of Chinese Primary Vegetation Types Based on NOAA /AVHRR Data[J]. Acta Botanica Sinica,1999, 41 (3):314-324.
[3]  [2]李晓兵,史培军.基于NOAA /AVHRR数据的中国主要植被类型NDVI 变化规律研究[J]. 植物学报,1999,41(3):314-324.
[4]  [3]张晓云,吕宪国.湿地生态系统服务价值评价研究综述[J].林业资源管理,2006,(10)5:81-87.
[5]  [4]Coops H,Hanganu J,Tudor M. Classification of Danube Delta Lakes Based on Aquatic Vegetation and Turbidity. Hydrobiologia[J]. Netherlands,1999,415:187-191.
[6]  [5]Dogan O K,Akyurek Z,Beklioglu M. Identification and Mapping of Submerged Plants in a Shallow Lake Using QuickBird Satellite Data[J]. Environmental Management,2008:1-6.
[7]  [6]James D,Hurd,Daniel C. Tidal Wetland and Classification from Llandsat Imagery Using an Integrated Pixel Based and Object Based Classification Approach[C]// ASPRS 2006 Annual Conference.Reno,2006:1-5.
[8]  [7]曹宝,秦其明,张自力,等. 基于特征增强技术的面向对象分类方法[J]. 水土保持研究,2008(15):135-139.
[9]  [8]成卫,胡东,付必谦,等.北京湿地生物多样性研究[M]. 北京:科学出版社,2007.
[10]  [9]杜凤兰,田庆久,夏学齐,等. 面向对象的地物分类方法研究与分析[J]. 遥感技术与应用,2004,19(1):20-23.
[11]  [12]Wright W A,Bristol F. Quick Markov Random Field Image Fusion [C]// Proceedings of the Conference on Signal Processing, Sensor Fusion and Target Recognition VII. Orlando, 1998:302-308.
[12]  [13]Broussard R P,Roges S K, Oxley M E,et al. Physiologically Motivated Image Fusion for Object Detection Using a Pulse Coupled Neural Network [J]. Neural Networks,1999 (3):554-563.
[13]  [14]Richard S,Sims F,Phillips M A. Target Signature Consistency of Image Data Fusion Alternatives [J].Optical Engineering,1997, 36(3):743-754.
[14]  [15]Leung L W,King B,Vohora V. Comparison of Image Data Fusion Techniques Using Entropy and INI [C]// The 22nd Asian Conference on Remote Sensing.Beijing,2001:203-210.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133