全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

武当地区韧性剪切带遥感解译

DOI: 10.6046/gtzyyg.2012.04.21, PP. 124-131

Keywords: 遥感解译,小波分析,武当地区,韧性剪切带

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用遥感技术提取韧性变形构造信息的研究一直在进行之中。武当地区构造变形历史复杂,韧性剪切变形具有一定的代表性。通过对武当地区推覆、滑覆型韧性剪切带的ETM图像遥感解译,认为尽管韧性剪切带在遥感图像上没有明显的异常界面,但因地质体的不同组成使韧性剪切带两侧影像的色调有明显差异;经小波分析和面理提取后,面理、线理集合体的影像特征和方位变化对韧性剪切带的识别有较好的效果。利用上述方法对郧西—郧县滑覆型剪切带、房县—竹山推覆型剪切带等6个典型实例进行了解译分析,经野外验证,与实地调查结果较为吻合,证实了这一方法的可行性,为推覆、滑覆型韧性剪切带的遥感解译提供了有益的借鉴。

References

[1]  张耀光,胡宜鸣.关于做好海岛县土地利用总体规划工作的探讨——以辽宁长海县为例[J].中国土地科学,1994,8(6):42-46.
[2]  吕惠萍.SPOT卫片在土地利用分类中的应用效果初探[J].地质地球化学,1989(5):53-55.
[3]  吴均平,毛志华,陈建裕,等.一种基于分割图斑的海岸带遥感图像分类方法[J].海洋学研究,2006,24(2):70-78.
[4]  Hu J M,Zhao G C,Ma G L,et al.Paleozoic Extensional Tectonics of the Wudang Block in the Qinling Orogen,China[J].Chinese Journal of Geology,2004,39(3):305-319(in Chinese with English Abstract).
[5]  雷世和,唐桂英.南秦岭造山带武当地区构造变形及构造复合[J].河北地质学院学报,1996,19(3/4):278-284.
[6]  Zhu G B,Blumberg D G.Classification Using ASTER Data and SVM Algorithms:The Case Study of Beer Sheva,Israel[J].Remote Sens Environ,2002,80(2):233-240.
[7]  赵书河,冯学智,都金康,等.基于支持向量机的SPIN-2影像与SPOT-4多光谱影像融合研究[J].遥感学报,2003,7(5):407-411.
[8]  Lei S H,Tang G Y.Study on Structural Deformation and Tectonic Compound in Wudang Area,Southern Qinling Orogen[J].Journal of Hebei College of Geology,1996,19(3/4):278-284(in Chinese with English Abstract).
[9]  曾云.湖北武当—两郧地区地质构造基本特征及构造演化[J].华南地质与矿产,1998(2):60-66.
[10]  Foody G M,Mathur A.Toward Intelligent Training of Supervised Image Classifications: Directing Training Data Acquisition for SVM Classification[J].Remote Sens Environ,2004,93(1/2):107-117.
[11]  Zeng Y.Geotectonic Characteristics and Evolution in Wudang-Yunxian-Yunxi Area,Hubei[J].Geology and Mineral Resources of South China,1998(2):60-66(in Chinese with English Abstract).
[12]  边肇祺,张学工.模式识别[M].北京:清华大学出版社,2000:32-35.
[13]  Bian Z Q,Zhang X G.Pattern Recognition[M].Beijing:Tsinghua University Press,2000:32-35(in Chinese).
[14]  梅建新.基于支持向量机的高分辨率遥感影像的目标检测研究[D].武汉:武汉大学,2004:75-77.
[15]  Mei J X.Study on Object Detection for High Resolution Remote Sensing Images Based on Support Vector Machines[D].Wuhan:Wuhan University,2004:75-77(in Chinese with English Abstract).
[16]  谢永华,傅德胜.基于小波变换的多源遥感图像的信息融合[J].遥感技术与应用,2001(4):260–262.
[17]  Xu K M.The Analysis of SPOT 5 Characteristics on Land Cover Classification[J].Science of Surveying and Mapping,2004,29(S1):108-116.
[18]  Foody G M,Mathur A.The Use of Small Training Sets Containing Mixed Pixels for Accurate Hard Image Classification:Training on Mixed Spectral Responses for Classification by a SVM[J].Remote Sens Environ,2006,103(2):179-189.
[19]  张锦水,何春阳,潘耀忠,等.基于SVM的多源信息复合的高空间分辨率遥感数据分类研究[J].遥感学报,2006,10(1):49-57.
[20]  Xie Y H,Fu D S.Multi-source Remote Sensing Image Data Fusion Based on Wavelet Transformation[J].Remote Sensing Technology and Application,2001(4):260–262(in Chinese with English Abstract).
[21]  陆关祥.造山带复杂结构构造区遥感—构造综合解析[D].西安:西北大学,2002.
[22]  Lu G X.A Comprehensive Remote Sensing—Structure Analysis of the Complicated Structural District in Orogenic Belt[D].Xi’an:Northwest University,2002(in Chinese with English Abstract).
[23]  郭子祺,卢刚,王超,等.海洋SAR:图像小波Speckle滤波及边缘信息提取[J].遥感学报,2001,5(6):428–443.
[24]  张华国,黄韦艮,周长宝.应用IKONOS卫星遥感图像监测南麂列岛土地覆盖状况[J].遥感技术与应用,2003,18(5):306-312.
[25]  杨存建,周成虎.基于知识的遥感图像分类方法的探讨[J].地理学与国土研究,2000,17(1):72-77.
[26]  李春华,沙晋明.基于知识的遥感影像的BAYES分类方法研究——以福州市琅歧岛土地覆盖/土地利用类型为例[J].水土保持研究,2006,13(6):126-128,132.
[27]  刘小平,彭晓鹃,艾彬.像元信息分解和决策树相结合的影像分类方法[J].地理与地理信息科学,2004,20(6):35-39.
[28]  刘勇洪,牛铮,王长耀.基于MODIS数据的决策树分类方法研究与应用[J].遥感学报,2005,9(4):405-412.
[29]  杜明义.决策树方法在土地荒漠化分类中的应用研究[J].测绘科学,2006,31(2):81-82,86.
[30]  Mazzoni D,Garay M J,Davies R,et al.An Operational MISR Pixel Classifier Using Support Vector Machines[J].Remote Sens Environ,2007,107(1/2):149-158.
[31]  Guo Z Q,Lu G,Wang C,et al.Using Wavelet for Filtering Speckle and Exacting Edge from Ocean SAR Image[J].Journal of Remote Sensing,2001,5(6):428–443(in Chinese with English Abstract).

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133