全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于HyperScan成像光谱数据的植被叶绿素反演

DOI: 10.6046/gtzyyg.2013.04.07, PP. 40-47

Keywords: 成像光谱仪,植被指数,叶绿素,反演

Full-Text   Cite this paper   Add to My Lib

Abstract:

准确估算叶绿素含量对研究植被的生态效应具有重要意义。针对基于高光谱数据的植被叶绿素含量反演问题,在介绍HyperScan高光谱遥感成像系统组成、传感器特性以及辐射定标原理和遥感反射率计算方法基础上,利用HyperScan采集的不同植被叶片的高光谱图像数据,采用归一化植被指数(NDVI)、简单比值指数(SR)、绿波段叶绿素指数(CIgreen)、土壤调节植被指数(SAVI)、差值植被指数(DVI)、改进的土壤调节植被指数2(MSAVI2)、三角植被指数(TVI)和叶绿素吸收比值指数(CARI)等8种植被指数反演模型进行了叶绿素含量反演实验;同时进行了波段合并实验,并比较了在逐步合并波段情况下各种模型的反演精度。实验结果表明,在选取的植被指数中,2波段植被指数反演精度普遍高于3波段植被指数。在波段合并实验中,随着波段的合并,模型精度逐渐下降。研究中模型精度普遍较高,说明利用地面高光谱图像进行叶片叶绿素含量反演是可行的,且采用叶片内光谱反射率均值进行叶片叶绿素含量反演有很高的反演精度。

References

[1]  童庆禧,薛永祺,王晋年,等.地面成像光谱辐射测量系统及其应用[J].遥感学报,2010,14(3):409-422. Tong Q X,Xue Y Q,Wang J N,et al.Development and application of the field imaging spectrometer system[J].Journal of Remote Sensing,2010,14(3):409-422.
[2]  Borregaard T,Nielsen H,Nrgaard L,et al.Crop-weed discrimination by line imaging spectroscopy[J].Journal of Agricultural Engineering Research,2000,75(4):389-400.
[3]  Monteiro S T,Minekawa Y,Kosugi Y,et al.Prediction of sweetness and amino acid content in soybean crops from hyperspectral imagery[J].ISPRS Journal of Photogrammetry and Remote Sensing,2007,62(1):2-12.
[4]  Rock B N,Hoshizaki T,Miller J R.Comparison of in situ and airborne spectral measurements of the blue shift associated with forest decline[J].Remote Sensing of Environment,1988,24(1):109-127.
[5]  Ustin S L,Gitelson A A,Jacquemoud S,et al.Retrieval of foliar information about plant pigment systems from high resolution spectroscopy[J].Remote Sensing of Environment,2009,113(s1):s67-s77.
[6]  李辉,白丹,张卓,等.羊草叶片SPAD值与叶绿素含量的相关分析[J].中国农学通报,2012,28(2):27-30. Li H,Bai D,Zhang Z,et al.Correlation analysis between SPAD value and chlorophyll content of leaf of leymus chinensis[J].Chinese Agricultural Science Bulletin,2012,28(2):27-30.
[7]  Steele M,Gitelson A A,Rundquist D.Research Note:Nondestructive estimation of leaf chlorophyll content in grapes[J].American Journal of Enology and Viticulture,2008,59(3):299-305.
[8]  Broge N H, Leblanc E.Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density[J].Remote Sensing of Environment,2001,76(2):156-172.
[9]  Bannari A,Morin D,Bonn F,et al.A review of vegetation indices[J].Remote Sensing Reviews,1995,13(1/2):95-120.
[10]  Peng Y,Gitelson A A.Application of chlorophyll-related vegetation indices for remote estimation of maize productivity[J].Agricultural and Forest Meteorology,2011,151(9):1267-1276.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133